Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
Curr Res Food Sci ; 9: 100788, 2024.
Article in English | MEDLINE | ID: mdl-39005496

ABSTRACT

Currently, coffee fermentation is visually operated, which results in incomplete or excessive processes and coffees with undesirable characteristics. In front of it, pH and total soluble solids (TSS) have been shown to be good fermentation indicators, although this requires rapid, accurate, and chemical-free measurement techniques such as NIR spectroscopy. However, the complexity of the NIR spectra requires optimization steps in which variable selection techniques simplify profiles and subsequent models. This work tests a new covering array feature selection (CAFS) approach on NIR spectra to optimize prediction models in coffee samples during fermentation. Spectral profiles in the range 1100-2100 nm were extracted from coffee beans (Typica, Caturra, and Catimor varieties) raw and during fermentation (4, 8, 12, 16, 20, and 24 h). Partial least-squares regressions (PLSR) were performed using full spectra using a five-fold cross-validation strategy for training and validation. The relevant wavelengths were then selected using the ß coefficients, the important projection of variables (VIP), and the CAFS method. Finally, optimized models were performed using the relevant wavelengths and compared among these using their statistical metrics. The models performed using the selected variables (22-47) of CAFS showed the best performance in predicting pH (R 2 = 0.825-0.903, RMSE = 0.096-0.158, RPD = 6.33-10.38) and TSS (R 2 = 0.865-0.922, RMSE = 0.688-1.059, RPD = 0.94-1.45) compared to the other methods. These findings suggest that simple and efficient models could be performed and implemented in routine analysis due to the maximum coverage and minimum cardinality of CAFS.

2.
Bioengineering (Basel) ; 11(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38790340

ABSTRACT

In this paper, we propose a daily living situation where objects in a kitchen can be grasped and stored in specific containers using a virtual robot arm operated by different myoelectric control modes. The main goal of this study is to prove the feasibility of providing virtual environments controlled through surface electromyography that can be used for the future training of people using prosthetics or with upper limb motor impairments. We propose that simple control algorithms can be a more natural and robust way to interact with prostheses and assistive robotics in general than complex multipurpose machine learning approaches. Additionally, we discuss the advantages and disadvantages of adding intelligence to the setup to automatically assist grasping activities. The results show very good performance across all participants who share similar opinions regarding the execution of each of the proposed control modes.

3.
Wound Repair Regen ; 31(5): 613-626, 2023.
Article in English | MEDLINE | ID: mdl-37462279

ABSTRACT

Delayed tissue repair in the aged presents a major socio-economic and clinical problem. Age-associated delay in wound healing can be attributed to multiple factors, including an increased presence of senescent cells persisting in the wound. Although the transient presence of senescent cells is physiologic during the resolution phase of normal healing, increased senescent cell accumulation with age can negatively impact tissue repair. The objective of the study was to test interventional strategies that could mitigate the negative effect of senescent cell accumulation and possibly improve the age-associated delay in wound healing. We utilised a 3D in vitro senescent fibroblast populated collagen matrix (FPCM) to study cellular events associated with senescence and delayed healing. Senescent fibroblasts showed an increase in anti-apoptotic B-cell lymphoma 2 (BCL-2) family proteins. We hypothesized that reducing the senescent cell population and promoting non-senescent cell functionality would mitigate the negative effect of senescence and improve healing kinetics. BCL-2 inhibition and mitogen stimulation (FGF2) improved healing in the in vitro senescent models. These results were confirmed with an ex vivo human skin biopsy model. These data suggested that modulation of the senescent cell population with soluble factors improved the healing outcome in our in vitro and ex vivo healing models.


Subject(s)
Cellular Senescence , Wound Healing , Humans , Aged , Wound Healing/physiology , Cellular Senescence/physiology , Fibroblast Growth Factor 2/pharmacology , Fibroblast Growth Factor 2/metabolism , Fibroblasts/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/pharmacology
4.
Breast Cancer Res Treat ; 201(2): 151-159, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37338729

ABSTRACT

PURPOSE: The monarchE trial showed that the addition of abemaciclib improves efficacy in patients with high-risk early breast cancer (EBC). We analyzed the long-term outcomes of a population similar to the monarchE trial to put into context the potential benefit of abemaciclib. METHODS: HR-positive/HER2-negative EBC patients eligible for the monarchE study were selected from 3 adjuvant clinical trials and a breast cancer registry. Patients with ≥ 4 positive axillary lymph nodes (N +) or 1-3 N + with tumor size ≥ 5 cm and/or histologic grade 3 and/or Ki67 ≥ 20%, who had undergone surgery with curative intent and had received anthracyclines ± taxanes and endocrine therapy in the neoadjuvant and /or adjuvant setting were included. We performed analysis of Invasive Disease-Free Survival (iDFS), Distant Disease-Free Survival (dDFS) and Overall Survival (OS) at 5 and 10 years, as well as yearly (up to 10) of Invasive Relapse Rate (IRR), Distant Relapse Rate (DRR) and Death Rate (DR). RESULTS: A total of 1,617 patients were analyzed from the GEICAM-9906 (312), GEICAM-2003-10 (210), and GEICAM-2006-10 (160) trials plus 935 from El Álamo IV. With a median follow-up of 10.1 years, the 5 and 10 years iDFS rates were 75.2% and 57.0%, respectively. The dDFS and OS rates at 5 years were 77.4% and 88.8% and the respective figures at 10 years were 59.7% and 70.9%. CONCLUSIONS: This data points out the need for new therapies for those patients. A longer follow-up of the monarchE study to see the real final benefit with abemaciclib is warranted. TRIAL REGISTRATION: ClinTrials.gov: GEICAM/9906: NCT00129922; GEICAM/ 2003-10: NCT00129935 and GEICAM/ 2006-10: NCT00543127.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Chemotherapy, Adjuvant , Neoplasm Recurrence, Local/drug therapy , Aminopyridines/therapeutic use , Disease-Free Survival , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Receptor, ErbB-2/genetics
5.
Sci Data ; 10(1): 132, 2023 03 11.
Article in English | MEDLINE | ID: mdl-36906700

ABSTRACT

Human Muscular Manipulability is a metric that measures the comfort of an specific pose and it can be used for a variety of applications related to healthcare. For this reason, we introduce KIMHu: a Kinematic, Imaging and electroMyography dataset for Human muscular manipulability index prediction. The dataset is comprised of images, depth maps, skeleton tracking data, electromyography recordings and 3 different Human Muscular Manipulability indexes of 20 participants performing different physical exercises with their arm. The methodology followed to acquire and process the data is also presented for future replication. A specific analysis framework for Human Muscular Manipulability is proposed in order to provide benchmarking tools based on this dataset.


Subject(s)
Musculoskeletal System , Humans , Biomechanical Phenomena , Electromyography , Diagnostic Imaging
6.
PLoS One ; 18(2): e0281373, 2023.
Article in English | MEDLINE | ID: mdl-36800369

ABSTRACT

Advances in wound treatment depend on the availability of animal models that reflect key aspects of human wound healing physiology. To this date, the accepted mouse models do not reflect defects in the healing process for chronic wounds that are associated with type two diabetic skin ulcers. The long term, systemic physiologic stress that occurs in middle aged or older Type 2 diabetes patients is difficult to simulate in preclinical animal model. We have strived to incorporate the essential elements of this stress in a manageable mouse model: long term metabolic stress from obesity to include the effects of middle age and thereafter onset of diabetes. At six-weeks age, male C57BL/6 mice were separated into groups fed a chow and High-Fat Diet for 0.5, 3, and 6 months. Treatment groups included long term, obesity stressed mice with induction of diabetes by streptozotocin at 5 months, and further physiologic evaluation at 8 months old. We show that this model results in a severe metabolic phenotype with insulin resistance and glucose intolerance associated with obesity and, more importantly, skin changes. The phenotype of this older age mouse model included a transcriptional signature of gene expression in skin that overlapped that observed with elderly patients who develop diabetic foot ulcers. We believe this unique old age phenotype contrasts with current mice models with induced diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Foot , Aged , Middle Aged , Humans , Male , Mice , Animals , Child, Preschool , Infant , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Mice, Inbred C57BL , Skin/metabolism , Disease Models, Animal , Wound Healing , Obesity/complications , Diabetic Foot/complications
7.
Biol Res Nurs ; 25(3): 353-366, 2023 07.
Article in English | MEDLINE | ID: mdl-36444640

ABSTRACT

BACKGROUND: Impaired wound healing is a health problem around the world, and the search for a novel product to repair wounded skin is a major topic in the field. GW9508 is a synthetic molecule described as a selective agonist of free fatty acid receptors (FFARs) 1 and 4, and there is evidence of its anti-inflammatory effects on several organs of the body. PURPOSE: Here, we aimed to evaluate the effects of topical GW9508 on wound healing in mice. RESEARCH DESIGN: First, we used bioinformatic methods to determine the expression of FFAR1 and FFAR4 mRNA in the skin from a human cell atlas assembled with single-cell transcriptomes. Next, we employed 6-week-old C57BL6J mice with 2 wounds inflicted in the back. The mice were randomly divided into 2 groups, a control group, which received topical vehicle, and a treatment group, which received GW9508, for 12 days. The wound was monitored by photographic documentation every 2 days, and samples were collected at day 6 and 12 post injury for RT-PCR, western blot and histology analyses. RESULTS: FFAR1 and FFAR4 mRNA are expressed in skin cells in similar amounts to those in other tissues. Topical GW9508 accelerated wound healing and decreased gene expression of IL-10 and metalloproteinase 9 on days 6 and 12 post injury. It increased the quantity of Collagen I and improved the organization of collagen fibres. Conclusions: Our results show that GW9508 could be an attractive drug treatment for wounded skin. Future studies need to be performed to assess the impact of GW9508 in chronic wound models.


Subject(s)
Cicatrix , Methylamines , Wound Healing , Wound Healing/drug effects , Animals , Mice , Methylamines/pharmacology , Propionates , Receptors, G-Protein-Coupled , Skin , Collagen , Anti-Inflammatory Agents/pharmacology , Administration, Topical
8.
Viruses ; 14(12)2022 12 09.
Article in English | MEDLINE | ID: mdl-36560757

ABSTRACT

Because of the interface between coagulation and the immune response, it is expected that COVID-19-associated coagulopathy occurs via activated protein C signaling. The objective was to explore putative changes in the expression of the protein C signaling network in the liver, peripheral blood mononuclear cells, and nasal epithelium of patients with COVID-19. Single-cell RNA-sequencing data from patients with COVID-19 and healthy subjects were obtained from the COVID-19 Cell Atlas database. A functional protein-protein interaction network was constructed for the protein C gene. Patients with COVID-19 showed downregulation of protein C and components of the downstream protein C signaling cascade. The percentage of hepatocytes expressing protein C was lower. Part of the liver cell clusters expressing protein C presented increased expression of ACE2. In PBMC, there was increased ACE2, inflammatory, and pro-coagulation transcripts. In the nasal epithelium, PROC, ACE2, and PROS1 were expressed by the ciliated cell cluster, revealing co-expression of ACE-2 with transcripts encoding proteins belonging to the coagulation and immune system interface. Finally, there was upregulation of coagulation factor 3 transcript in the liver and PBMC. Protein C could play a mechanistic role in the hypercoagulability syndrome affecting patients with severe COVID-19.


Subject(s)
COVID-19 , Thrombophilia , Humans , COVID-19/genetics , Leukocytes, Mononuclear/metabolism , SARS-CoV-2/genetics , Protein C/genetics , Protein C/metabolism , Down-Regulation , Transcriptome , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Peptidyl-Dipeptidase A/metabolism , Thrombophilia/genetics
9.
Biosensors (Basel) ; 12(11)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36354506

ABSTRACT

Robotic developments in the field of rehabilitation and assistance have seen a significant increase in the last few years [...].


Subject(s)
Biosensing Techniques , Robotics
10.
Biosensors (Basel) ; 12(7)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35884272

ABSTRACT

In this paper, we present ARMIA: a sensorized arm wearable that includes a combination of inertial and sEMG sensors to interact with serious games in telerehabilitation setups. This device reduces the cost of robotic assistance technologies to be affordable for end-users at home and at rehabilitation centers. Hardware and acquisition software specifications are described together with potential applications of ARMIA in real-life rehabilitation scenarios. A detailed comparison with similar medical technologies is provided, with a specific focus on wearable devices and virtual and augmented reality approaches. The potential advantages of the proposed device are also described showing that ARMIA could provide similar, if not better, the effectivity of physical therapy as well as giving the possibility of home-based rehabilitation.


Subject(s)
Robotics , Wearable Electronic Devices , Computers , Software
11.
PLoS One ; 17(2): e0263869, 2022.
Article in English | MEDLINE | ID: mdl-35176067

ABSTRACT

The pig skin architecture and physiology are similar to those of humans. Thus, the pig model is very valuable for studying skin biology and testing therapeutics. The single-cell RNA sequencing (scRNA-seq) technology allows quantitatively analyzing cell types, compositions, states, signaling, and receptor-ligand interactome at single-cell resolution and at high throughput. scRNA-seq has been used to study mouse and human skins. However, studying pig skin with scRNA-seq is still rare. A critical step for successful scRNA-seq is to obtain high-quality single cells from the pig skin tissue. Here we report a robust method for isolating and cryopreserving pig skin single cells for scRNA-seq. We showed that pig skin could be efficiently dissociated into single cells with high cell viability using the Miltenyi Human Whole Skin Dissociation kit and the Miltenyi gentleMACS Dissociator. Furthermore, the obtained single cells could be cryopreserved using 90% FBS + 10% DMSO without causing additional cell death, cell aggregation, or changes in gene expression profiles. Using the developed protocol, we were able to identify all the major skin cell types. The protocol and results from this study are valuable for the skin research scientific community.


Subject(s)
Cryopreservation/methods , Single-Cell Analysis/methods , Skin/cytology , Skin/metabolism , Specimen Handling/methods , Transcriptome , Animals , Gene Expression Profiling , Swine , Exome Sequencing
12.
PLoS One ; 16(10): e0259134, 2021.
Article in English | MEDLINE | ID: mdl-34699564

ABSTRACT

Epidermal growth factor (EGF) promotes cell growth, proliferation, and survival in numerous tissues. Piperonylic acid, a metabolite present in peppers (Piper nigrum L. and Piper longum L.), can bind to the epidermal growth factor receptor (EGFR) and induce an intracellular signaling cascade leading to the transcription of genes responsible for these actions, especially in keratinocytes. These cells are fundamental in maintaining cutaneous homeostasis and are the first to be damaged in the case of a wound. Thus, we hypothesized that piperonylic acid improves wound healing. C57BL6/J male mice were submitted to dorsal skin wounds caused by a 6 mm punch and treated topically with piperonylic acid or vehicle. The wounds were evaluated macro- and microscopically, and tissue samples were collected for immunofluorescence and real-time PCR analyses on days 6, 9 and 19 post-injury. Topical piperonylic acid improved wound healing from day 6 post-injury until closure. This phenomenon apparently occurred through EGFR activation. In addition, piperonylic acid modulated the gene expression of interleukin (Il)-6, il-1ß, tumor necrosis factor (Tnf)-α, il-10, monocyte chemoattractant protein (Mcp)-1 and insulin-like growth factor (Igf)-1, which are important for the healing process. By day 19 post-injury, the new tissue showed greater deposition of type I collagen and a morphology closer to intact skin, with more dermal papillae and hair follicles. We conclude that piperonylic acid may be a viable option for the treatment of skin wounds.


Subject(s)
Benzoates/administration & dosage , Collagen/metabolism , Inflammation/metabolism , Skin/drug effects , Wound Healing/drug effects , Animals , Cytokines/metabolism , Keratinocytes/drug effects , Keratinocytes/metabolism , Male , Mice , Mice, Inbred C57BL , Skin/metabolism
13.
J Neuroinflammation ; 18(1): 192, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34465367

ABSTRACT

BACKGROUND: Interleukin-6 (IL6) produced in the context of exercise acts in the hypothalamus reducing obesity-associated inflammation and restoring the control of food intake and energy expenditure. In the hippocampus, some of the beneficial actions of IL6 are attributed to its neurogenesis-inducing properties. However, in the hypothalamus, the putative neurogenic actions of IL6 have never been explored, and its potential to balance energy intake can be an approach to prevent or attenuate obesity. METHODS: Wild-type (WT) and IL6 knockout (KO) mice were employed to study the capacity of IL6 to induce neurogenesis. We used cell labeling with Bromodeoxyuridine (BrdU), immunofluorescence, and real-time PCR to determine the expression of markers of neurogenesis and neurotransmitters. We prepared hypothalamic neuroprogenitor cells from KO that were treated with IL6 in order to provide an ex vivo model to further characterizing the neurogenic actions of IL6 through differentiation assays. In addition, we analyzed single-cell RNA sequencing data and determined the expression of IL6 and IL6 receptor in specific cell types of the murine hypothalamus. RESULTS: IL6 expression in the hypothalamus is low and restricted to microglia and tanycytes, whereas IL6 receptor is expressed in microglia, ependymocytes, endothelial cells, and astrocytes. Exogenous IL6 reduces diet-induced obesity. In outbred mice, obesity-resistance is accompanied by increased expression of IL6 in the hypothalamus. IL6 induces neurogenesis-related gene expression in the hypothalamus and in neuroprogenitor cells, both from WT as well as from KO mice. CONCLUSION: IL6 induces neurogenesis-related gene expression in the hypothalamus of WT mice. In KO mice, the neurogenic actions of IL6 are preserved; however, the appearance of new fully differentiated proopiomelanocortin (POMC) and neuropeptide Y (NPY) neurons is either delayed or disturbed.


Subject(s)
Hypothalamus/metabolism , Interleukin-6/genetics , Neurogenesis/genetics , Neurons/metabolism , Obesity/genetics , Animals , Energy Metabolism/physiology , Ependymoglial Cells/drug effects , Ependymoglial Cells/metabolism , Hypothalamus/drug effects , Interleukin-6/metabolism , Interleukin-6/pharmacology , Male , Mice , Mice, Knockout , Microglia/drug effects , Microglia/metabolism , Neurogenesis/drug effects , Neurons/drug effects , Obesity/metabolism , Receptors, Interleukin-6/genetics , Receptors, Interleukin-6/metabolism
14.
Front Vet Sci ; 8: 651202, 2021.
Article in English | MEDLINE | ID: mdl-34368269

ABSTRACT

Currently, experimental animals are widely used in biological and medical research. However, the scientific community has raised several bioethical concerns, such as the number of animals required to achieve reproducible and statistically relevant results. These concerns involve aspects related to pain, discomfort, and unwanted animal loss. Retrospectively, we compare two different approaches for anesthesia dosage: a mobile app for dose calculation and a standard dose calculation. A total of 939 C57BL/6J and Swiss mice were analyzed. We collected data on intraoperative and anesthesia-related mortality as described in electronic or physical handwritten records. Our results showed that the mobile app approach significantly reduces anesthetic-related deaths upon using doses of ketamine and xylazine. The results suggest that anesthesia-related mortality can be minimized even more using information technology approaches, helping to solve an old but transversal challenge for researchers working with experimental mice. The mobile app is a free and open code which could be implemented worldwide as an essential requirement for all anesthetic procedures in mice using xylazine and ketamine combination. As an open code app, the Labinsane initiative could also represent the starting point to unify and validate other anesthetic procedures in different species and strains.

15.
Sci Rep ; 11(1): 15453, 2021 07 29.
Article in English | MEDLINE | ID: mdl-34326383

ABSTRACT

Glutamic acid is the main excitatory neurotransmitter acting both in the brain and in peripheral tissues. Abnormal distribution of glutamic acid receptors occurs in skin hyperproliferative conditions such as psoriasis and skin regeneration; however, the biological function of glutamic acid in the skin remains unclear. Using ex vivo, in vivo and in silico approaches, we showed that exogenous glutamic acid promotes hair growth and keratinocyte proliferation. Topical application of glutamic acid decreased the expression of genes related to apoptosis in the skin, whereas glutamic acid increased cell viability and proliferation in human keratinocyte cultures. In addition, we identified the keratinocyte glutamic acid excitotoxic concentration, providing evidence for the existence of a novel skin signalling pathway mediated by a neurotransmitter that controls keratinocyte and hair follicle proliferation. Thus, glutamic acid emerges as a component of the peripheral nervous system that acts to control cell growth in the skin. These results raise the perspective of the pharmacological and nutritional use of glutamic acid to treat skin diseases.


Subject(s)
Glutamic Acid/pharmacology , Hair Follicle/drug effects , Hair/drug effects , Skin Physiological Phenomena , Skin/drug effects , Animals , Apoptosis , Cell Line , Cell Proliferation , Computer Simulation , Drug Development , Fibroblasts/metabolism , Glutamic Acid/metabolism , Humans , Keratinocytes/cytology , Male , Mice , Protein Interaction Mapping , Regeneration , Signal Transduction , Skin/metabolism
16.
J Exp Bot ; 72(14): 5158-5179, 2021 07 10.
Article in English | MEDLINE | ID: mdl-34021317

ABSTRACT

The CGIAR crop improvement (CI) programs, unlike commercial CI programs, which are mainly geared to profit though meeting farmers' needs, are charged with meeting multiple objectives with target populations that include both farmers and the community at large. We compiled the opinions from >30 experts in the private and public sector on key strategies, methodologies, and activities that could the help CGIAR meet the challenges of providing farmers with improved varieties while simultaneously meeting the goals of: (i) nutrition, health, and food security; (ii) poverty reduction, livelihoods, and jobs; (iii) gender equality, youth, and inclusion; (iv) climate adaptation and mitigation; and (v) environmental health and biodiversity. We review the crop improvement processes starting with crop choice, moving through to breeding objectives, production of potential new varieties, selection, and finally adoption by farmers. The importance of multidisciplinary teams working towards common objectives is stressed as a key factor to success. The role of the distinct disciplines, actors, and their interactions throughout the process from crop choice through to adoption by farmers is discussed and illustrated.


Subject(s)
Agriculture , Farmers , Humans
17.
Sports Med Open ; 7(1): 23, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33792764

ABSTRACT

BACKGROUND: To validate the traditional talk test (TTT) and an alternative talk test (ATT; using a visual analog scale) in overweight/obese (OW-OB) patients and to establish its accuracy in determining the aerobic training zones. METHODS: We recruited 19 subjects aged 34.9 ± 6.7 years, diagnosed with overweight/obesity (BMI 31.8 ± 5.7). Every subject underwent incremental cycloergometric tests for maximal oxygen consumption, and TTT in a randomized order. At the end of each stage during the TTT, each subject read out loud a 40 words text and then had to identify the comfort to talk in two modalities: TTT which consisted in answering "Yes," "I don't know," or "No" to the question Was talking comfortable?, or ATT through a 1 to 10 numeric perception scale (visual analog scale (VAS)). The magnitude of differences was interpreted in comparison to the smallest worthwhile change and was used to determine agreement. RESULTS: There was an agreement between the power output at the VAS 2-3 of ATT and the power output at the ventilatory threshold 1 (VT1) (very likely equivalent; mean difference - 1.3 W, 90% confidence limit (CL) (- 8.2; 5.6), percent chances for higher/similar/lower values of 0.7/99.1/0.2%). Also, there was an agreement between the power output at the VAS 6-7 of ATT and the power output at the ventilatory threshold 2 (VT2) (very likely equivalent; mean difference 11.1 W, 90% CL (2.8; 19.2), percent chances for higher/similar/lower values of 0.0/97.6/2.4%). CONCLUSIONS: ATT is a tool to determine exercise intensity and to establish aerobic training zones for exercise prescription in OW-OB patients.

18.
Int J Mol Sci ; 22(5)2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33668314

ABSTRACT

Under high-fat feeding, the hypothalamus atypically undergoes pro-inflammatory signaling activation. Recent data from transcriptomic analysis of microglia from rodents and humans has allowed the identification of several microglial subpopulations throughout the brain. Numerous studies have clarified the roles of these cells in hypothalamic inflammation, but how each microglial subset plays its functions upon inflammatory stimuli remains unexplored. Fortunately, these data unveiling microglial heterogeneity have triggered the development of novel experimental models for studying the roles and characteristics of each microglial subtype. In this review, we explore microglial heterogeneity in the hypothalamus and their crosstalk with astrocytes under high fat diet-induced inflammation. We present novel currently available ex vivo and in vivo experimental models that can be useful when designing a new research project in this field of study. Last, we examine the transcriptomic data already published to identify how the hypothalamic microglial signature changes upon short-term and prolonged high-fat feeding.


Subject(s)
Astrocytes/pathology , Diet, High-Fat/adverse effects , Hypothalamus/pathology , Inflammation/pathology , Microglia/pathology , Transcriptome , Animals , Astrocytes/metabolism , Humans , Hypothalamus/metabolism , Inflammation/etiology , Inflammation/metabolism , Microglia/metabolism
19.
Allergy Asthma Clin Immunol ; 17(1): 5, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33407838

ABSTRACT

BACKGROUND: Severe coronavirus disease-19 (COVID-19) presents with progressive dyspnea, which results from acute lung inflammatory edema leading to hypoxia. As with other infectious diseases that affect the respiratory tract, asthma has been cited as a potential risk factor for severe COVID-19. However, conflicting results have been published over the last few months and the putative association between these two diseases is still unproven. METHODS: Here, we systematically reviewed all reports on COVID-19 published since its emergence in December 2019 to June 30, 2020, looking into the description of asthma as a premorbid condition, which could indicate its potential involvement in disease progression. RESULTS: We found 372 articles describing the underlying diseases of 161,271 patients diagnosed with COVID-19. Asthma was reported as a premorbid condition in only 2623 patients accounting for 1.6% of all patients. CONCLUSIONS: As the global prevalence of asthma is 4.4%, we conclude that either asthma is not a premorbid condition that contributes to the development of COVID-19 or clinicians and researchers are not accurately describing the premorbidities in COVID-19 patients.

20.
Sci Rep ; 10(1): 19522, 2020 11 11.
Article in English | MEDLINE | ID: mdl-33177594

ABSTRACT

SARS-CoV-2, the pathogenic agent of COVID-19, employs angiotensin converting enzyme-2 (ACE2) as its cell entry receptor. Clinical data reveal that in severe COVID-19, SARS-CoV-2 infects the lung, leading to a frequently lethal triad of respiratory insufficiency, acute cardiovascular failure, and coagulopathy. Physiologically, ACE2 plays a role in the regulation of three systems that could potentially be involved in the pathogenesis of severe COVID-19: the kinin-kallikrein system, resulting in acute lung inflammatory edema; the renin-angiotensin system, promoting cardiovascular instability; and the coagulation system, leading to thromboembolism. Here we assembled a healthy human lung cell atlas meta-analysis with ~ 130,000 public single-cell transcriptomes and show that key elements of the bradykinin, angiotensin and coagulation systems are co-expressed with ACE2 in alveolar cells and associated with their differentiation dynamics, which could explain how changes in ACE2 promoted by SARS-CoV-2 cell entry result in the development of the three most severe clinical components of COVID-19.


Subject(s)
Betacoronavirus/genetics , Blood Coagulation , Gene Expression Profiling , Kallikrein-Kinin System/genetics , Peptidyl-Dipeptidase A/genetics , Pulmonary Alveoli/cytology , Renin-Angiotensin System/genetics , Angiotensin-Converting Enzyme 2 , Betacoronavirus/enzymology , Betacoronavirus/physiology , Humans , Pulmonary Alveoli/metabolism , SARS-CoV-2 , Serine Endopeptidases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...