Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(18)2022 Sep 10.
Article in English | MEDLINE | ID: mdl-36146214

ABSTRACT

This article presents the problem of passive radar vessel detection in a real coastal scenario in the presence of sea and wind farms' clutter, which are characterised by high spatial and time variability due to the influence of weather conditions. Deterministic and adaptive beamforming techniques are proposed and evaluated using real data. Key points such as interference localisation and characterisation are tackled in the passive bistatic scenario with omnidirectional illuminators that critically increase the area of potential clutter sources to areas far from the surveillance area. Adaptive beamforming approaches provide significant Signal-to-Interference improvements and important radar coverage improvements. In the presented case study, an aerial target is detected 28 km far from the passive radar receiver, fulfilling highly demanding performance requirements.

2.
Sensors (Basel) ; 22(5)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35270872

ABSTRACT

Global Positioning System (GPS) satellites offer promising opportunity for Passive Radar systems due to their global coverage and the availability of multiple satellites throughout the world. However, their low power at ground level limits system coverage. In this paper, a GPS based Passive Radar which exploits a single illumination source, and uses digital array processing for ground targets localization is presented. To face signal power problems, a processing scheme combining reconstructed reference signals, adaptive filtering techniques and spatial filtering is implemented. Conventional beamforming techniques are used to increase the level of the target echo before the detection stage, and high resolution DoA estimation techniques are applied to estimate targets azimuth. Ground target localization in local Cartesian space is performed taking into account the system geometry, range and azimuth information. Both synthetic and real radar data are used to analyse system operation. During the measurement campaign, a cooperative vehicle was used for validation purposes. Results confirm that ground targets detection and localization are feasible using a single GPS transmitter.

3.
Sensors (Basel) ; 21(16)2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34450720

ABSTRACT

A reflectarray antenna with an optimized sectorial beam is designed for the surveillance channel of a DVB-S-based passive radar (PR). The employment of satellite illuminators requires a high gain antenna to counteract the losses due to the great distance from the transmitter, but without forgetting a beamwidth wide enough to provide angular coverage. A method based on optimizing the position of several contiguous beams is proposed to achieve the required sectorial pattern. Different reflectarray elements are designed to achieve S-curves with smooth slopes and covering all the required phases (the S-curve represents the reflection phase of a single element, as a function of size, rotation and incidence angle). The real phase and modulus of the reflection coefficient of each element are considered in the optimization process to achieve the best real prototype. Geometry has been studied and adapted to employ commercial elements for the feed, feed-arm and the structure that holds the aperture. The designed prototype has been characterized in an anechoic chamber achieving a stable gain greater than 19 dBi in almost the complete DVB-S band, from 10.5 GHz to 12 GHz with a sectorial beam of 8.7∘×5.2∘. The prototype has also been validated in PR trials in terrestrial scenarios allowing the detection of cars at distances up to 600 m away from the PR, improving the performance achieved with commercial parabolic dish antennas.

4.
Sensors (Basel) ; 15(11): 29079-106, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26593921

ABSTRACT

Passive radars exploit the signal transmitted by other systems, known as opportunity illuminators (OIs), instead of using their own transmitter. Due to its almost total invulnerability to natural disasters or physical attacks, satellite OIs are of special interest. In this line, a feasibility study of Earth Observation Synthetic Aperture Radar (EO SAR) systems as OIs is carried out taking into consideration signal waveform, availability, bistatic geometry, instrumented coverage area and incident power density. A case study based on the use of PAZ, the first Spanish EO SAR, is presented. PAZ transmitted waveform, operation modes, orbit characteristics and antenna and transmitter parameters are analyzed to estimate potential coverages and resolutions. The study concludes that, due to its working in on-demand operating mode, passive radars based on PAZ-type illuminators can be proposed as complementing tools during the sensor commissioning phase, for system maintenance and for improving its performance by providing additional information about the area of interest and/or increasing the data updating speed, exploiting other sensors during the time PAZ is not available.

SELECTION OF CITATIONS
SEARCH DETAIL
...