Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Geochem Health ; 41(5): 2265-2279, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30919171

ABSTRACT

Alluvial soils of valleys of the Danube and Mlave rivers represent priority development areas with favorable conditions for life, agriculture and tourism in eastern Serbia. Operation of the thermal power plant Kostolac results in the emission of potentially toxic pollutants into the air, water and land. The goals were to determine the soil pollution with inorganic pollutants using different pollution indices, to identify of the sources of pollutants by means of principal component analysis and the loading of each factor for individual element assessed by multi-linear regression analyses. Chemical characteristics of the studied area resulted in division of the area into four impact zones upon the distance from main pollutants (power plant blocks and ash disposal dumps). There was no established soil pollution with potentially toxic elements in bulk of the agricultural territory. Two principal components (PC1 and PC2) explained about 73% of variance. Three studied elements (As, Cu and Pb) showed anthropogenic origin of their most concentrations in soil, while other elements (Cd, Co, Cr, Ni and Zn) were of a natural (geological) origin. Single pollution index showed moderate pollution level by Ni. Integrated Nemerow pollution index showed low to no pollution levels, indicating slight ecological risk. There were no established limitations for agricultural production in the studied area, except for the only spot polluted by As due to the great flooding event in the studied year.


Subject(s)
Environmental Monitoring , Environmental Pollution/analysis , Metals, Heavy/analysis , Power Plants , Soil Pollutants/analysis , Soil/chemistry , Agriculture , Rivers/chemistry , Serbia , Soil Pollutants/chemistry , Wind
2.
Environ Monit Assess ; 190(11): 675, 2018 Oct 26.
Article in English | MEDLINE | ID: mdl-30367275

ABSTRACT

In this paper, various spatial modelling techniques were applied to analyse changes in soil cover and their impact on soil erosion in the Oplenac wine-producing area in Serbia in the past (1985 and 2013) and in the future (with predictions for 2041). The Integrated Valuation of Ecosystem Services and Trade-offs Sediment Delivery Ratio (InVEST SDR) model and the Modules for Land Use Change Evaluation (MOLUSCE) model, integrated with methods of remote sensing, were successfully applied and were shown to be valid tools for predicting the impact of Land Use Land Cover (LULC) changes when estimating soil loss. The results revealed that the greatest impact of land use changes between 1985 and 2013 was on a reduction in areas under vineyards and an extension of meadow and pasturelands as an individual and social response to economic conditions during the research period. The forecast for 2041 reflected the trends observed in the previous period, with the greatest changes witnessing an increase in urban areas and a decrease in areas of arable land. It was also found that the effect of LULC changes on spatio-temporal patterns in the Oplenac wine-producing area did not have a major impact on soil loss, meaning this area, with its good agro-climatic characteristics, is suitable for the intensification of agricultural production.


Subject(s)
Conservation of Natural Resources/methods , Ecosystem , Environmental Monitoring/methods , Soil/chemistry , Agriculture/methods , Serbia , Spatio-Temporal Analysis , Wine
3.
Environ Sci Pollut Res Int ; 21(5): 3764-73, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24281676

ABSTRACT

Elevated arsenic (As) concentrations in soil are often found in the vicinity of certain mineral deposits that have been, or are currently, under exploitation, regardless of the target resource. Detailed study of such areas for safe agriculture requires considerable financial costs and long periods of time. Application of an appropriate spatial model that describes the behavior of arsenic in soil and plants can significantly ease the whole investigation process. This paper presents a model of ecological security of an area that, in the past, was an antimony mine and has a naturally high content of arsenic. For simulation and modeling the geographic information science (GIS) technology with the inserted predictors influencing the accessibility of As and its content in plants was used. The results obtained were the following: (1) a categorization of contaminated soils according to soil properties was developed; (2) the proposed methodology allows focusing on particular suspect area saving an energy and human resource input; and (3) new safe areas for growing crops in contaminated area were modeled. The application of the proposed model of As solubility to various crops grown around a former antimony mine near the village of Lisa, southwest Serbia showed that significant expansion of the areas suitable for growing potato, raspberry, and pasture was possible.


Subject(s)
Arsenic/analysis , Models, Theoretical , Soil Pollutants/analysis , Agriculture , Antimony , Ecosystem , Environmental Monitoring/statistics & numerical data , Geographic Information Systems , Mining , Serbia , Spatial Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...