Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Cell ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38848717

ABSTRACT

The histone H3 lysine 9 methyltransferase SETDB1 controls transcriptional repression to direct stem cell fate. Here, we show that Setdb1 expression by adult muscle stem cells (MuSCs) is required for skeletal muscle regeneration. We find that SETDB1 represses the expression of endogenous retroviruses (ERVs) in MuSCs. ERV de-repression in Setdb1-null MuSCs prevents their amplification following exit from quiescence and promotes cell death. Multi-omics profiling shows that chromatin decompaction at ERV loci activates the DNA-sensing cGAS-STING pathway, entailing cytokine expression by Setdb1-null MuSCs. This is followed by aberrant infiltration of inflammatory cells, including pathological macrophages. The ensuing histiocytosis is accompanied by myofiber necrosis, which, in addition to progressive MuSCs depletion, completely abolishes tissue repair. In contrast, loss of Setdb1 in fibro-adipogenic progenitors (FAPs) does not impact immune cells. In conclusion, genome maintenance by SETDB1 in an adult somatic stem cell is necessary for both its regenerative potential and adequate reparative inflammation.

2.
NPJ Regen Med ; 8(1): 19, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37019910

ABSTRACT

Skeletal muscle regeneration requires the coordinated interplay of diverse tissue-resident- and infiltrating cells. Fibro-adipogenic progenitors (FAPs) are an interstitial cell population that provides a beneficial microenvironment for muscle stem cells (MuSCs) during muscle regeneration. Here we show that the transcription factor Osr1 is essential for FAPs to communicate with MuSCs and infiltrating macrophages, thus coordinating muscle regeneration. Conditional inactivation of Osr1 impaired muscle regeneration with reduced myofiber growth and formation of excessive fibrotic tissue with reduced stiffness. Osr1-deficient FAPs acquired a fibrogenic identity with altered matrix secretion and cytokine expression resulting in impaired MuSC viability, expansion and differentiation. Immune cell profiling suggested a novel role for Osr1-FAPs in macrophage polarization. In vitro analysis suggested that increased TGFß signaling and altered matrix deposition by Osr1-deficient FAPs actively suppressed regenerative myogenesis. In conclusion, we show that Osr1 is central to FAP function orchestrating key regenerative events such as inflammation, matrix secretion and myogenesis.

3.
Nat Commun ; 13(1): 3961, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35803939

ABSTRACT

Satellite cells are required for the growth, maintenance, and regeneration of skeletal muscle. Quiescent satellite cells possess a primary cilium, a structure that regulates the processing of the GLI family of transcription factors. Here we find that GLI3 processing by the primary cilium plays a critical role for satellite cell function. GLI3 is required to maintain satellite cells in a G0 dormant state. Strikingly, satellite cells lacking GLI3 enter the GAlert state in the absence of injury. Furthermore, GLI3 depletion stimulates expansion of the stem cell pool. As a result, satellite cells lacking GLI3 display rapid cell-cycle entry, increased proliferation and augmented self-renewal, and markedly enhanced regenerative capacity. At the molecular level, we establish that the loss of GLI3 induces mTORC1 signaling activation. Therefore, our results provide a mechanism by which GLI3 controls mTORC1 signaling, consequently regulating muscle stem cell activation and fate.


Subject(s)
Satellite Cells, Skeletal Muscle , Cell Differentiation/physiology , Cell Proliferation , Mechanistic Target of Rapamycin Complex 1 , Muscle, Skeletal , Stem Cells , Virus Internalization
4.
J Physiol ; 599(12): 3081-3100, 2021 06.
Article in English | MEDLINE | ID: mdl-33913171

ABSTRACT

KEY POINTS: Tamoxifen-inducible skeletal muscle-specific AXIN1 knockout (AXIN1 imKO) in mouse does not affect whole-body energy substrate metabolism. AXIN1 imKO does not affect AICAR or insulin-stimulated glucose uptake in adult skeletal muscle. AXIN1 imKO does not affect adult skeletal muscle AMPK or mTORC1 signalling during AICAR/insulin/amino acid incubation, contraction and exercise. During exercise, α2/ß2/γ3AMPK and AMP/ATP ratio show greater increases in AXIN1 imKO than wild-type in gastrocnemius muscle. ABSTRACT: AXIN1 is a scaffold protein known to interact with >20 proteins in signal transduction pathways regulating cellular development and function. Recently, AXIN1 was proposed to assemble a protein complex essential to catabolic-anabolic transition by coordinating AMPK activation and inactivation of mTORC1 and to regulate glucose uptake-stimulation by both AMPK and insulin. To investigate whether AXIN1 is permissive for adult skeletal muscle function, a phenotypic in vivo and ex vivo characterization of tamoxifen-inducible skeletal muscle-specific AXIN1 knockout (AXIN1 imKO) mice was conducted. AXIN1 imKO did not influence AMPK/mTORC1 signalling or glucose uptake stimulation at rest or in response to different exercise/contraction protocols, pharmacological AMPK activation, insulin or amino acids stimulation. The only genotypic difference observed was in exercising gastrocnemius muscle, where AXIN1 imKO displayed elevated α2/ß2/γ3 AMPK activity and AMP/ATP ratio compared to wild-type mice. Our work shows that AXIN1 imKO generally does not affect skeletal muscle AMPK/mTORC1 signalling and glucose metabolism, probably due to functional redundancy of its homologue AXIN2.


Subject(s)
AMP-Activated Protein Kinases , Axin Protein/genetics , Glucose/metabolism , Mechanistic Target of Rapamycin Complex 1 , Muscle, Skeletal/physiology , AMP-Activated Protein Kinases/metabolism , Aminoimidazole Carboxamide , Animals , Energy Metabolism , Insulin , Mice , Mice, Knockout , Muscle Contraction , Physical Conditioning, Animal , Ribonucleotides
SELECTION OF CITATIONS
SEARCH DETAIL
...