Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Comput Assist Radiol Surg ; 18(7): 1225-1233, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37222930

ABSTRACT

PURPOSE: Existing field generators (FGs) for magnetic tracking cause severe image artifacts in X-ray images. While FG with radio-lucent components significantly reduces these imaging artifacts, traces of coils and electronic components may still be visible to trained professionals. In the context of X-ray-guided interventions using magnetic tracking, we introduce a learning-based approach to further reduce traces of field-generator components from X-ray images to improve visualization and image guidance. METHODS: An adversarial decomposition network was trained to separate the residual FG components (including fiducial points introduced for pose estimation), from the X-ray images. The main novelty of our approach lies in the proposed data synthesis method, which combines existing 2D patient chest X-ray and FG X-ray images to generate 20,000 synthetic images, along with ground truth (images without the FG) to effectively train the network. RESULTS: For 30 real images of a torso phantom, our enhanced X-ray image after image decomposition obtained an average local PSNR of 35.04 and local SSIM of 0.97, whereas the unenhanced X-ray images averaged a local PSNR of 31.16 and local SSIM of 0.96. CONCLUSION: In this study, we proposed an X-ray image decomposition method to enhance X-ray image for magnetic navigation by removing FG-induced artifacts, using a generative adversarial network. Experiments on both synthetic and real phantom data demonstrated the efficacy of our method.


Subject(s)
Artifacts , Image Processing, Computer-Assisted , Humans , Image Processing, Computer-Assisted/methods , X-Rays , Radiography , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...