Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-37245065

ABSTRACT

The successful design of economically viable bioprocesses can help to abate global dependence on petroleum, increase supply chain resilience, and add value to agriculture. Specifically, bioprocessing provides the opportunity to replace petrochemical production methods with biological methods and to develop novel bioproducts. Even though a vast range of chemicals can be biomanufactured, the constraints on economic viability, especially while competing with petrochemicals, are severe. There have been extensive gains in our ability to engineer microbes for improved production metrics and utilization of target carbon sources. The impact of growth medium composition on process cost and organism performance receives less attention in the literature than organism engineering efforts, with media optimization often being performed in proprietary settings. The widespread use of corn steep liquor as a nutrient source demonstrates the viability and importance of "waste" streams in biomanufacturing. There are other promising waste streams that can be used to increase the sustainability of biomanufacturing, such as the use of urea instead of fossil fuel-intensive ammonia and the use of struvite instead of contributing to the depletion of phosphate reserves. In this review, we discuss several process-specific optimizations of micronutrients that increased product titers by twofold or more. This practice of deliberate and thoughtful sourcing and adjustment of nutrients can substantially impact process metrics. Yet the mechanisms are rarely explored, making it difficult to generalize the results to other processes. In this review, we will discuss examples of nutrient sourcing and adjustment as a means of process improvement. ONE-SENTENCE SUMMARY: The potential impact of nutrient adjustments on bioprocess performance, economics, and waste valorization is undervalued and largely undercharacterized.

2.
PLoS One ; 17(10): e0276046, 2022.
Article in English | MEDLINE | ID: mdl-36227900

ABSTRACT

Outer membrane protein A (OmpA) is one of the most abundant outer membrane proteins of Gram-negative bacteria and is known to have patterns of sequence variations at certain amino acids-allelic variation-in Escherichia coli. Here we subjected seven exemplar OmpA alleles expressed in a K-12 (MG1655) ΔompA background to further characterization. These alleles were observed to significantly impact cell surface charge (zeta potential), cell surface hydrophobicity, biofilm formation, sensitivity to killing by neutrophil elastase, and specific growth rate at 42°C and in the presence of acetate, demonstrating that OmpA is an attractive target for engineering cell surface properties and industrial phenotypes. It was also observed that cell surface charge and biofilm formation both significantly correlate with cell surface hydrophobicity, a cell property that is increasingly intriguing for bioproduction. While there was poor alignment between the observed experimental values relative to the known sequence variation, differences in hydrophobicity and biofilm formation did correspond to the identity of residue 203 (N vs T), located within the proposed dimerization domain. The relative abundance of the (I, δ) allele was increased in extraintestinal pathogenic E. coli (ExPEC) isolates relative to environmental isolates, with a corresponding decrease in (I, α) alleles in ExPEC relative to environmental isolates. The (I, α) and (I, δ) alleles differ at positions 203 and 251. Variations in distribution were also observed among ExPEC types and phylotypes. Thus, OmpA allelic variation and its influence on OmpA function warrant further investigation.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Extraintestinal Pathogenic Escherichia coli , Alleles , Amino Acids/metabolism , Bacterial Outer Membrane Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Extraintestinal Pathogenic Escherichia coli/genetics , Humans , Leukocyte Elastase/metabolism , Surface Properties
3.
Metab Eng ; 73: 134-143, 2022 09.
Article in English | MEDLINE | ID: mdl-35842218

ABSTRACT

The economic viability of bioprocesses is constrained by the limited range of operating conditions that can be tolerated by the cell factory. Engineering of the microbial cell membrane is one strategy that can increase robustness and thus alter this range. In this work, we targeted cellular components that contribute to maintenance of appropriate membrane function, such as: flotillin-like proteins, membrane structural proteins, and membrane lipids. Specifically, we exploited the promiscuity of squalene hopene cyclase (SHC) to produce polycyclic terpenoids with properties analogous to cholesterol. Strains producing these cholesterol-like molecules were visualized by AFM and height features were observed. Production of these cholesterol-like molecules was associated with increased tolerance towards a diversity of chemicals, particularly alcohols, and membrane trafficking processes such as lipid droplet accumulation and production of extracellular vesicles. This engineering approach improved the production titers for wax-esters and ethanol by 80- and 10-fold, respectively. Expression of SHC resulted in the production of steroids. Strains engineered to also express truncated squalene synthase (tERG9) produced diplopterol and generally did not perform as well. Increased expression of several membrane-associated proteins, such as YqiK, was observed to impact vesicle trafficking and further improve tolerance relative to SHC alone, but did not improve bio-production. Deletion of YbbJ increased lipid droplet accumulation as well as production of intracellular wax esters. This work serves as a proof of concept for engineering strategies targeting membrane physiology and trafficking to expand the production capacity of microbial cell factories.


Subject(s)
Escherichia coli , Membrane Lipids , Cell Membrane/metabolism , Cholesterol/genetics , Cholesterol/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Membrane Lipids/metabolism , Metabolic Engineering/methods , Terpenes/metabolism
4.
J Ind Microbiol Biotechnol ; 49(4)2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35348703

ABSTRACT

Nonconventional yeasts have an untapped potential to expand biotechnology and enable process development necessary for a circular economy. They are especially convenient for the field of lipid and hydrocarbon biotechnology because they offer faster growth than plants and easier scalability than microalgae and exhibit increased tolerance relative to some bacteria. The ability of industrial organisms to import and metabolically transform lipids and hydrocarbons is crucial in such applications. Here, we assessed the ability of 14 yeasts to utilize 18 model lipids and hydrocarbons from six functional groups and three carbon chain lengths. The studied strains covered 12 genera from nine families. Nine nonconventional yeasts performed better than Saccharomyces cerevisiae, the most common industrial yeast. Rhodotorula toruloides, Candida maltosa, Scheffersomyces stipitis, and Yarrowia lipolytica were observed to grow significantly better and on more types of lipids and lipid molecules than other strains. They were all able to utilize mid- to long-chain fatty acids, fatty alcohols, alkanes, alkenes, and dicarboxylic acids, including 28 previously unreported substrates across the four yeasts. Interestingly, a phylogenetic analysis showed a short evolutionary distance between the R. toruloides, C. maltosa, and S. stipitis, even though R. toruloides is classified under a different phylum. This work provides valuable insight into the lipid substrate range of nonconventional yeasts that can inform species selection decisions and viability of lipid feedstocks.


Subject(s)
Yarrowia , Yeasts , Biotechnology , Fatty Acids , Humans , Hydrocarbons , Phylogeny , Saccharomyces cerevisiae , Yarrowia/genetics , Yeasts/genetics
5.
J Ind Microbiol Biotechnol ; 49(2)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35040946

ABSTRACT

The goal of cost-effective production of fuels and chemicals from biomass has been a substantial driver of the development of the field of metabolic engineering. The resulting design principles and procedures provide a guide for the development of cost-effective methods for degradation, and possibly even valorization, of plastic wastes. Here, we highlight these parallels, using the creative work of Lonnie O'Neal (Neal) Ingram in enabling production of fuels and chemicals from lignocellulosic biomass, with a focus on ethanol production as an exemplar process.


Subject(s)
Lignin , Plastics , Biomass , Lignin/metabolism , Metabolic Engineering
6.
Metab Eng ; 66: 98-113, 2021 07.
Article in English | MEDLINE | ID: mdl-33813035

ABSTRACT

The cell membrane plays a central role in the fitness and performance of microbial cell factories and therefore it is an attractive engineering target. The goal of this work is to develop a systematic framework for identifying membrane features for use as engineering targets. The metrics that describe the composition of the membrane can be visualized as "knobs" that modulate various "outcomes", such as physical properties of the membrane and metabolic activity in the form of growth and productivity, with these relationships varying depending on the condition. We generated a set of strains with altered membrane lipid composition via expression of des, fabA and fabB and performed a rigorous characterization of these knobs and outcomes across several individual inhibitory conditions. Here, the knobs are the relative abundance of unsaturated lipids and lipids containing cyclic rings; the average lipid length, and the ratio of linear and non-linear lipids (L/nL ratio). The outcomes are membrane permeability, hydrophobicity, fluidity, and specific growth rate. This characterization identified significant correlations between knobs and outcomes that were specific to individual inhibitors, but also were significant across all tested conditions. For example, across all conditions, the L/nL ratio is positively correlated with the cell surface hydrophobicity, and the average lipid length is positively correlated with specific growth rate. A subsequent analysis of the data with the individual inhibitors identified pairs of lipid metrics and membrane properties that were predicted to impact cell growth in seven modeled scenarios with two or more inhibitors. The L/nL ratio and the membrane hydrophobicity were predicted to impact cell growth with the highest frequency. We experimentally validated this prediction in the combined condition of 42 °C, 2.5 mM furfural and 2% v/v ethanol in minimal media. Membrane hydrophobicity was confirmed to be a significant predictor of ethanol production. This work demonstrates that membrane physical properties can be used to predict the performance of biocatalysts in single and multiple inhibitory conditions, and possibly as an engineering target. In this manner, membrane properties can possibly be used as screening or selection metrics for library- or evolution-based strain engineering.


Subject(s)
Benchmarking , Membrane Lipids , Cell Membrane/metabolism , Cell Membrane Permeability , Ethanol/metabolism , Membrane Lipids/metabolism
7.
Metab Eng ; 61: 120-130, 2020 09.
Article in English | MEDLINE | ID: mdl-32474056

ABSTRACT

Adaptive laboratory evolution is often used to improve the performance of microbial cell factories. Reverse engineering of evolved strains enables learning and subsequent incorporation of novel design strategies via the design-build-test-learn cycle. Here, we reverse engineer a strain of Escherichia coli previously evolved for increased tolerance of octanoic acid (C8), an attractive biorenewable chemical, resulting in increased C8 production, increased butanol tolerance, and altered membrane properties. Here, evolution was determined to have occurred first through the restoration of WaaG activity, involved in the production of lipopolysaccharides, then an amino acid change in RpoC, a subunit of RNA polymerase, and finally mutation of the BasS-BasR two component system. All three mutations were required in order to reproduce the increased growth rate in the presence of 20 mM C8 and increased cell surface hydrophobicity; the WaaG and RpoC mutations both contributed to increased C8 titers, with the RpoC mutation appearing to be the major driver of this effect. Each of these mutations contributed to changes in the cell membrane. Increased membrane integrity and rigidity and decreased abundance of extracellular polymeric substances can be attributed to the restoration of WaaG. The increase in average lipid tail length can be attributed to the RpoCH419P mutation, which also confers tolerance to other industrially-relevant inhibitors, such as furfural, vanillin and n-butanol. The RpoCH419P mutation may impact binding or function of the stringent response alarmone ppGpp to RpoC site 1. Each of these mutations provides novel strategies for engineering microbial robustness, particularly at the level of the microbial cell membrane.


Subject(s)
Caprylates/metabolism , DNA-Directed RNA Polymerases , Escherichia coli Proteins , Escherichia coli , Glucosyltransferases , Metabolic Engineering , Mutation, Missense , Amino Acid Substitution , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Glucosyltransferases/genetics , Glucosyltransferases/metabolism
8.
AMB Express ; 10(1): 28, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-32016659

ABSTRACT

Mechanocatalysis is a promising method for depolymerization of lignocellulosic biomass. Microbial utilization of the resulting oligosaccharides is one potential route of adding value to the depolymerized biomass. However, it is unclear how readily these oligosaccharides are utilized by standard cell factories. Here, we investigate utilization of cellulose subjected to mechanocatalytic depolymerization, using ethanologenic Escherichia coli as a model fermentation organism. The mechanocatalytic oligosaccharides supported ethanol titers similar to those observed when glucose was provided at comparable concentrations. Tracking of the various oligomers, using maltose (alpha-1,4) and cellobiose (beta-1,4) oligomers as representative standards of the orientation, but not linkage, of the glycosidic bond, suggests that the malto-like-oligomers are more readily utilized than cello-like-oligomers, consistent with poor growth with cellotetraose or cellopentaose as sole carbon source. Thus, mechanocatalytic oligosaccharides are a promising substrate for cell factories, and microbial utilization of these sugars could possibly be improved by addressing utilization of cello-like oligomers.

9.
PLoS One ; 14(10): e0223568, 2019.
Article in English | MEDLINE | ID: mdl-31596881

ABSTRACT

Engineering remains the least gender diverse of the science, technology, engineering and mathematics fields. Chemical engineering (ChE) and electrical engineering (EE) are exemplars of relatively high and low gender diversity, respectively. Here, we investigate departmental, institutional, and regional factors associated with gender diversity among BS graduates within the US, 2010-2016. For both fields, gender diversity was significantly higher at private institutions (p < 1x10-6) and at historically black institutions (p < 1x10-5). No significant association was observed with gender diversity among tenure-track faculty, PhD-granting status, and variations in departmental name beyond the standard "chemical engineering" or "electrical engineering". Gender diversity among EE graduates was significantly decreased (p = 8x10-5) when a distinct degree in computer engineering was available; no such association was observed between ChE gender diversity and the presence of biology-associated degrees. States with a highly gender diverse ChE workforce had a significantly higher degree of gender diversity among BS graduates (p = 3x10-5), but a significant association was not observed for EE. State variation in funding of support services for K-12 pupils significantly impacted gender diversity of graduates in both fields (p < 1x10-3), particularly in regards to instructional staff support (p < 5x10-4). Nationwide, gender diversity could not be concluded to be either significantly increasing or significantly decreasing for either field.


Subject(s)
Chemical Engineering/education , Education, Graduate/statistics & numerical data , Sexism/statistics & numerical data , Adult , Female , Humans , Male , Schools/statistics & numerical data , United States
10.
J Ind Microbiol Biotechnol ; 46(11): 1531-1545, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31270700

ABSTRACT

The economic viability of the biorefinery concept is limited by the valorization of lignin. One possible method of lignin valorization is biological upgrading with aromatic-catabolic microbes. In conjunction, lignin monomers can be produced by fast pyrolysis and fractionation. However, biological upgrading of these lignin monomers is limited by low water solubility. Here, we address the problem of low water solubility with an emulsifier blend containing approximately 70 wt% Tween® 20 and 30 wt% Span® 80. Pseudomonas putida KT2440 grew to an optical density (OD600) of 1.0 ± 0.2 when supplied with 1.6 wt% emulsified phenolic monomer-rich product produced by fast pyrolysis of red oak using an emulsifier dose of 0.076 ± 0.002 g emulsifier blend per g of phenolic monomer-rich product. This approach partially mitigated the toxicity of the model phenolic monomer p-coumarate to the microbe, but not benzoate or vanillin. This study provides a proof of concept that processing of biomass-derived phenolics to increase aqueous availability can enhance microbial utilization.


Subject(s)
Phenols/metabolism , Plant Oils/metabolism , Polyphenols/metabolism , Pseudomonas putida/metabolism , Biomass , Chemical Fractionation , Emulsions , Lignin/metabolism
11.
J Ind Microbiol Biotechnol ; 46(6): 843-853, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30806872

ABSTRACT

The economic viability of bio-production processes is often limited by damage to the microbial cell membrane and thus there is a demand for strategies to increase the robustness of the cell membrane. Damage to the microbial membrane is also a common mode of action by antibiotics. Membrane-impermeable DNA-binding dyes are often used to assess membrane integrity in conjunction with flow cytometry. We demonstrate that in situ assessment of the membrane permeability of E. coli to SYTOX Green is consistent with flow cytometry, with the benefit of lower experimental intensity, lower cost, and no need for a priori selection of sampling times. This method is demonstrated by the characterization of four membrane engineering strategies (deletion of aas, deletion of cfa, increased expression of cfa, and deletion of bhsA) for their effect on octanoic acid tolerance, with the finding that deletion of bhsA increased tolerance and substantially decreased membrane leakage.


Subject(s)
Caprylates/toxicity , Cell Membrane Permeability/drug effects , Escherichia coli/drug effects , Flow Cytometry/methods , Bioengineering/methods , Caprylates/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Escherichia coli/metabolism , Organic Chemicals/metabolism
12.
Appl Environ Microbiol ; 84(19)2018 10 01.
Article in English | MEDLINE | ID: mdl-30030228

ABSTRACT

Fermentative production of many attractive biorenewable fuels and chemicals is limited by product toxicity in the form of damage to the microbial cell membrane. Metabolic engineering of the production organism can help mitigate this problem, but there is a need for identification and prioritization of the most effective engineering targets. Here, we use a set of previously characterized environmental Escherichia coli isolates with high tolerance and production of octanoic acid, a model membrane-damaging biorenewable product, as a case study for identifying and prioritizing membrane engineering strategies. This characterization identified differences in the membrane lipid composition, fluidity, integrity, and cell surface hydrophobicity from those of the lab strain MG1655. Consistent with previous publications, decreased membrane fluidity was associated with increased fatty acid production ability. Maintenance of high membrane integrity or longer membrane lipids seemed to be of less importance than fluidity. Cell surface hydrophobicity was also directly associated with fatty acid production titers, with the strength of this association demonstrated by plasmid-based expression of the multiple stress resistance outer membrane protein BhsA. This expression of bhsA was effective in altering hydrophobicity, but the direction and magnitude of the change differed between strains. Thus, additional strategies are needed to reliably engineer cell surface hydrophobicity. This work demonstrates the ability of environmental microbiological studies to impact the metabolic engineering design-build-test-learn cycle and possibly increase the economic viability of fermentative bioprocesses.IMPORTANCE The production of bulk fuels and chemicals in a bio-based fermentation process requires high product titers. This is often difficult to achieve, because many of the target molecules damage the membrane of the microbial cell factory. Engineering the composition of the membrane in order to decrease its vulnerability to this damage has proven to be an effective strategy for improving bioproduction, but additional strategies and engineering targets are needed. Here, we studied a small set of environmental Escherichia coli isolates that have higher production titers of octanoic acid, a model biorenewable chemical, than those of the lab strain MG1655. We found that membrane fluidity and cell surface hydrophobicity are strongly associated with improved octanoic acid production. Fewer genetic modification strategies have been demonstrated for tuning hydrophobicity relative to fluidity, leading to the conclusion that there is a need for expanding hydrophobicity engineering strategies in E. coli.


Subject(s)
Caprylates/metabolism , Cell Membrane/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Cell Membrane/chemistry , Cell Membrane/genetics , Environmental Microbiology , Escherichia coli/chemistry , Escherichia coli/isolation & purification , Fatty Acids/metabolism , Hydrophobic and Hydrophilic Interactions , Membrane Fluidity , Membrane Lipids/metabolism , Metabolic Engineering
13.
Biotechnol Biofuels ; 11: 87, 2018.
Article in English | MEDLINE | ID: mdl-29619083

ABSTRACT

BACKGROUND: As a versatile platform chemical, construction of microbial catalysts for free octanoic acid production from biorenewable feedstocks is a promising alternative to existing petroleum-based methods. However, the bio-production strategy has been restricted by the low capacity of E. coli inherent fatty acid biosynthesis. In this study, a combination of integrated computational and experimental approach was performed to manipulate the E. coli existing metabolic network, with the objective of improving bio-octanoic acid production. RESULTS: First, a customized OptForce methodology was run to predict a set of four genetic interventions required for production of octanoic acid at 90% of the theoretical yield. Subsequently, all the ten candidate proteins associated with the predicted interventions were regulated individually, as well as in contrast to the combination of interventions as suggested by the OptForce strategy. Among these enzymes, increased production of 3-hydroxy-acyl-ACP dehydratase (FabZ) resulted in the highest increase (+ 45%) in octanoic acid titer. But importantly, the combinatorial application of FabZ with the other interventions as suggested by OptForce further improved octanoic acid production, resulting in a high octanoic acid-producing E. coli strain +fabZ ΔfadE ΔfumAC ΔackA (TE10) (+ 61%). Optimization of TE10 expression, medium pH, and C:N ratio resulted in the identified strain producing 500 mg/L of C8 and 805 mg/L of total FAs, an 82 and 155% increase relative to wild-type MG1655 (TE10) in shake flasks. The best engineered strain produced with high selectivity (> 70%) and extracellularly (> 90%) up to 1 g/L free octanoic acid in minimal medium fed-batch culture. CONCLUSIONS: This work demonstrates the effectiveness of integration of computational strain design and experimental characterization as a starting point in rewiring metabolism for octanoic acid production. This result in conjunction with the results of other studies using OptForce in strain design demonstrates that this strategy may be also applicable to engineering E. coli for other customized bioproducts.

14.
Curr Opin Biotechnol ; 53: 93-98, 2018 10.
Article in English | MEDLINE | ID: mdl-29306676

ABSTRACT

Rational, predictive metabolic engineering of organisms requires an ability to associate biological activity to the corresponding gene(s). Despite extensive advances in the 20 years since the Escherichia coli genome was published, there are still gaps in our knowledge of protein function. The substantial amount of data that has been published, such as: omics-level characterization in a myriad of conditions; genome-scale libraries; and evolution and genome sequencing, provide means of identifying and prioritizing proteins for characterization. This review describes the scale of this knowledge gap, demonstrates the benefit of addressing the knowledge gap, and demonstrates the availability of interesting candidates for characterization.


Subject(s)
Metabolic Engineering/methods , Molecular Sequence Annotation , Proteins/metabolism , Gene Dosage , Genome , Metabolomics
15.
Metab Eng ; 44: 1-12, 2017 11.
Article in English | MEDLINE | ID: mdl-28867349

ABSTRACT

Economically competitive microbial production of biorenewable fuels and chemicals is often impeded by toxicity of the product to the microbe. Membrane damage is often identified as a major mechanism of this toxicity. Prior efforts to strengthen the microbial membrane by changing the phospholipid distribution have largely focused on the fatty acid tails. Herein, a novel strategy of phospholipid head engineering is demonstrated in Escherichia coli. Specifically, increasing the expression of phosphatidylserine synthase (+pssA) was found to significantly increase both the tolerance and production of octanoic acid, a representative membrane-damaging solvent. Tolerance of other industrially-relevant inhibitors, such as furfural, acetate, toluene, ethanol and low pH was also increased. In addition to the increase in the relative abundance of the phosphoethanolamine (PE) head group in the +pssA strain, there were also changes in the fatty acid tail composition, resulting in an increase in average length, percent unsaturation and decreased abundance of cyclic rings. This +pssA strain had significant changes in: membrane integrity, surface potential, electrochemical potential and hydrophobicity; sensitivity to intracellular acidification; and distribution of the phospholipid tails, including an increase in average length and percent unsaturation and decreased abundance of cyclic rings. Molecular dynamics simulations demonstrated that the +PE membrane had increased resistance to penetration of ethanol into the hydrophobic core and also the membrane thickness. Further hybrid models in which only the head group distribution or fatty acid tail distribution was altered showed that the increase in PE content is responsible for the increase in bilayer thickness, but the increased hydrophobic core thickness is due to altered distribution of both the head groups and fatty acid tails. This work demonstrates the importance of consideration of the membrane head groups, as well as a modeling approach, in membrane engineering efforts.


Subject(s)
Bacterial Proteins , Escherichia coli , Ethanolamines/metabolism , Glycosyltransferases , Metabolic Engineering , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Glycosyltransferases/genetics , Glycosyltransferases/metabolism
16.
PLoS One ; 12(9): e0184664, 2017.
Article in English | MEDLINE | ID: mdl-28910343

ABSTRACT

E. coli bacteria move in streams freely in a planktonic state or attached to suspended particulates. Attachment is a dynamic process, and the fraction of attached microorganisms is thought to be affected by both bacterial characteristics and particulate properties. In this study, we investigated how the properties of cell surfaces and stream particulates influence attachment. Attachment assays were conducted for 77 E. coli strains and three model particulates (ferrihydrite, Ca-montmorillonite, or corn stover) under environmentally relevant conditions. Surface area, particle size distribution, and total carbon content were determined for each type of particulate. Among the three particulates, attachment fractions to corn stover were significantly larger than the attachments to 2-line ferrihydrite (p-value = 0.0036) and Ca-montmorillonite (p-value = 0.022). Furthermore, attachment to Ca-montmorillonite and corn stover was successfully modeled by a Generalized Additive Model (GAM) using cell characteristics as predictor variables. The natural logarithm of the net charge on the bacterial surface had a significant, positive, and linear impact on the attachment of E. coli bacteria to Ca-montmorillonite (p-value = 0.013), but it did not significantly impact the attachment to corn stover (p-value = 0.36). The large diversities in cell characteristics among 77 E. coli strains, particulate properties, and attachment fractions clearly demonstrated the inadequacy of using a static parameter or linear coefficient to predict the attachment behavior of E. coli in stream water quality models.


Subject(s)
Bacterial Adhesion , Escherichia coli/physiology , Algorithms , Attachment Sites, Microbiological , Bentonite , Particle Size , Surface Properties
17.
Front Microbiol ; 8: 708, 2017.
Article in English | MEDLINE | ID: mdl-28515712

ABSTRACT

Understanding the genetic factors that govern microbe-sediment interactions in aquatic environments is important for water quality management and reduction of waterborne disease outbreaks. Although chemical properties of bacteria have been identified that contribute to initiation of attachment, the outer membrane proteins that contribute to these chemical properties still remain unclear. In this study we explored the attachment of 78 Escherichia coli environmental isolates to corn stover, a representative agricultural residue. Outer membrane proteome analysis led to the observation of amino acid variations, some of which had not been previously described, in outer membrane protein A (OmpA) at 10 distinct locations, including each of the four extracellular loops, three of the eight transmembrane segments, the proline-rich linker and the dimerization domain. Some of the polymorphisms within loops 1, 2, and 3 were found to significantly co-occur. Grouping of sequences according to the outer loop polymorphisms revealed five distinct patterns that each occur in at least 5% of our isolates. The two most common patterns, I and II, are encoded by 33.3 and 20.5% of these isolates and differ at each of the four loops. Statistically significant differences in attachment to corn stover were observed among isolates expressing different versions of OmpA and when different versions of OmpA were expressed in the same genetic background. Most notable was the increased corn stover attachment associated with a loop 3 sequence of SNFDGKN relative to the standard SNVYGKN sequence. These results provide further insight into the allelic variation of OmpA and implicate OmpA in contributing to attachment to corn stover.

18.
J Ind Microbiol Biotechnol ; 44(9): 1279-1292, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28551747

ABSTRACT

Lignocellulosic biomass is an appealing feedstock for the production of biorenewable fuels and chemicals, and thermochemical processing is a promising method for depolymerizing it into sugars. However, trace compounds in this pyrolytic sugar syrup are inhibitory to microbial biocatalysts. This study demonstrates that hydrophobic inhibitors damage the cell membrane of ethanologenic Escherichia coli KO11+lgk. Adaptive evolution was employed to identify design strategies for improving pyrolytic sugar tolerance and utilization. Characterization of the resulting evolved strain indicates that increased resistance to the membrane-damaging effects of the pyrolytic sugars can be attributed to a glutamine to leucine mutation at position 29 of carbon storage regulator CsrA. This single amino acid change is sufficient for decreasing EPS protein production and increasing membrane integrity when exposed to pyrolytic sugars.


Subject(s)
Cell Membrane/metabolism , Escherichia coli/cytology , Escherichia coli/metabolism , Sugars/metabolism , Biomass , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Ethanol/metabolism , Fermentation , Glutamine/genetics , Glutamine/metabolism , Leucine/genetics , Leucine/metabolism , Lignin/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Repressor Proteins/chemistry , Repressor Proteins/genetics , Repressor Proteins/metabolism
19.
Microb Cell Fact ; 16(1): 38, 2017 Feb 28.
Article in English | MEDLINE | ID: mdl-28245829

ABSTRACT

BACKGROUND: Construction of microbial biocatalysts for the production of biorenewables at economically viable yields and titers is frequently hampered by product toxicity. Membrane damage is often deemed as the principal mechanism of this toxicity, particularly in regards to decreased membrane integrity. Previous studies have attempted to engineer the membrane with the goal of increasing membrane integrity. However, most of these works focused on engineering of phospholipids and efforts to identify membrane proteins that can be targeted to improve fatty acid production have been unsuccessful. RESULTS: Here we show that deletion of outer membrane protein ompF significantly increased membrane integrity, fatty acid tolerance and fatty acid production, possibly due to prevention of re-entry of short chain fatty acids. In contrast, deletion of fadL resulted in significantly decreased membrane integrity and fatty acid production. Consistently, increased expression of fadL remarkably increased membrane integrity and fatty acid tolerance while also increasing the final fatty acid titer. This 34% increase in the final fatty acid titer was possibly due to increased membrane lipid biosynthesis. Tuning of fadL expression showed that there is a positive relationship between fadL abundance and fatty acid production. Combinatorial deletion of ompF and increased expression of fadL were found to have an additive role in increasing membrane integrity, and was associated with a 53% increase the fatty acid titer, to 2.3 g/L. CONCLUSIONS: These results emphasize the importance of membrane proteins for maintaining membrane integrity and production of biorenewables, such as fatty acids, which expands the targets for membrane engineering.


Subject(s)
Bacterial Outer Membrane Proteins/genetics , Cell Membrane/physiology , Escherichia coli Proteins/genetics , Escherichia coli/genetics , Escherichia coli/physiology , Fatty Acid Transport Proteins/genetics , Fatty Acids/biosynthesis , Porins/genetics , Bacterial Outer Membrane Proteins/metabolism , Escherichia coli Proteins/metabolism , Fatty Acid Transport Proteins/metabolism , Gene Deletion , Gene Expression , Membrane Lipids/biosynthesis , Sequence Deletion
20.
Front Microbiol ; 7: 1732, 2016.
Article in English | MEDLINE | ID: mdl-27847507

ABSTRACT

The importance of E. coli as an indicator organism in fresh water has led to numerous studies focusing on cell properties and transport behavior. However, previous studies have been unable to assess if differences in E. coli cell surface properties and genomic variation are associated with different environmental habitats. In this study, we investigated the variation in characteristics of E. coli obtained from stream water and stream bottom sediments. Cell properties were measured for 77 genomically different E. coli strains (44 strains isolated from sediments and 33 strains isolated from water) under common stream conditions in the Upper Midwestern United States: pH 8.0, ionic strength 10 mM and 22°C. Measured cell properties include hydrophobicity, zeta potential, net charge, total acidity, and extracellular polymeric substance (EPS) composition. Our results indicate that stream sediment E. coli had significantly greater hydrophobicity, greater EPS protein content and EPS sugar content, less negative net charge, and higher point of zero charge than stream water E. coli. A significant positive correlation was observed between hydrophobicity and EPS protein for stream sediment E. coli but not for stream water E. coli. Additionally, E. coli surviving in the same habitat tended to have significantly larger (GTG)5 genome similarity. After accounting for the intrinsic impact from the genome, environmental habitat was determined to be a factor influencing some cell surface properties, such as hydrophobicity. The diversity of cell properties and its resulting impact on particle interactions should be considered for environmental fate and transport modeling of aquatic indicator organisms such as E. coli.

SELECTION OF CITATIONS
SEARCH DETAIL
...