Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(29): 20982-20991, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38962093

ABSTRACT

This article has shown the impact of all-trans-retinal on human brain cancer, which is apparent in the shifts in the redox status of cytochrome c in a single cell. The connection between cytochrome c expression and its role in cancer development remains relatively unexplored. To assess this, we employed Raman spectroscopy and imaging to determine the redox state of the iron ion in cytochrome c across different cellular locations, including mitochondria, cytoplasm, lipid droplets, and the endoplasmic reticulum within human brain cancer cells. We have analyzed normal human astrocytes (NHA) and two brain cancer cell lines (astrocytoma - CRL-1718 and glioblastoma - U-87 MG) without and supplemented with all-trans-retinal. Our results confirmed that human brain cancer cells demonstrate varying redox status compared to normal cells based on the established correlation between the intensity of the cytochrome c Raman band at 1583 cm-1 and the malignancy grade of brain cancer cells. Our research unveiled that all-trans-retinal induces remarkable changes in the mitochondrial functional activity (redox status) of cancer cells, which were measured by confocal Raman spectroscopy and imaging.

2.
Analyst ; 149(9): 2697-2708, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38506099

ABSTRACT

In this paper, we present Raman imaging as a non-invasive approach for studying changes in mitochondrial metabolism caused by cardiolipin-cytochrome c interactions. We investigated the effect of mitochondrial dysregulation on cardiolipin (CL) and cytochrome c (Cyt c) interactions for a brain cancer cell line (U-87 MG). Mitochondrial metabolism was monitored by checking the intensities of the Raman bands at 750 cm-1, 1126 cm-1, 1310 cm-1, 1337 cm-1, 1444 cm-1 and 1584 cm-1. The presented results indicate that under pathological conditions, the content and redox status of Cyt c in mitochondria can be used as a Raman marker to characterize changes in cellular metabolism. This work provides evidence that cardiolipin-cytochrome c interactions are crucial for mitochondrial energy homeostasis by controlling the redox status of Cyt c in the electron transport chain, switching from disabling Cyt c reduction and enabling peroxidase activity. This paper provides experimental support for the hypothesis of how cardiolipin-cytochrome c interactions regulate electron transfer in the respiratory chain, apoptosis and mROS production in mitochondria.


Subject(s)
Brain Neoplasms , Cardiolipins , Cytochromes c , Glioblastoma , Mitochondria , Spectrum Analysis, Raman , Cardiolipins/metabolism , Cytochromes c/metabolism , Humans , Mitochondria/metabolism , Cell Line, Tumor , Spectrum Analysis, Raman/methods , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Glioblastoma/metabolism , Glioblastoma/pathology , Oxidation-Reduction
3.
Sci Rep ; 13(1): 14731, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37679473

ABSTRACT

Maintaining life (respiration), cell death (apoptosis), oxygen transport and immunity are main biological functions of heme containing proteins. These functions are controlled by the axial ligands and the redox status of the iron ion (oscillations between Fe2+ and Fe3+) in the heme group. This paper aims to evaluate the current state of knowledge on oxidation and oxygenation effects in heme proteins. We determined the redox status of the iron ion in whole blood (without and with anticoagulant), hemoglobin in erythrocytes, in isolated cytochrome c and cytochrome c in mitochondria of the human lung cancer cells using UV-VIS electronic absorption spectroscopy, Raman spectroscopy and Raman imaging. Here we discussed the mechanism responsible for the Q electronic absorption band spectral behavior, i.e., its splitting, and its change in extinction coefficient, as well as vibrational modifications upon oxygenation and oxidation. We compared the redox status of heme in hemoglobin of human erythrocytes and cytochrome c in mitochondria of human lung cancer cells. Presented results allow simultaneous identification of oxy- and deoxy-Hb, where 1547 and 1604 cm-1 vibrations correspond to deoxygenated hemoglobin, while 1585 and 1638 cm-1 correspond to oxyhemoglobin, respectively. Our results extend knowledge of oxidation and oxygenation effects in heme proteins. We demonstrated experimentally the mechanism of electronic-vibrational coupling for the Q band splitting. Presented results extend knowledge on oxidation and oxygenation effects in heme proteins and provide evidence that both processes are strongly coupled. We showed that retinoic acid affects the redox state of heme in cytochrome c in mitochondria. The change of the redox status of cytochrome c in mitochondria from the oxidized form to the reduced form has very serious consequences in dysfunction of mitochondria resulting in inhibition of respiration, apoptosis and cytokine induction.


Subject(s)
Hemeproteins , Lung Neoplasms , Humans , Cytochromes c , Hemoglobins , Erythrocytes , Oxidation-Reduction , Heme , Lung
SELECTION OF CITATIONS
SEARCH DETAIL
...