Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
BMJ ; 343: d5543, 2011 Sep 22.
Article in English | MEDLINE | ID: mdl-21940742

ABSTRACT

OBJECTIVE: To clinically evaluate a new patented multimodal system (SAFERSleep) designed to reduce errors in the recording and administration of drugs in anaesthesia. DESIGN: Prospective randomised open label clinical trial. SETTING: Five designated operating theatres in a major tertiary referral hospital. PARTICIPANTS: Eighty nine consenting anaesthetists managing 1075 cases in which there were 10,764 drug administrations. INTERVENTION: Use of the new system (which includes customised drug trays and purpose designed drug trolley drawers to promote a well organised anaesthetic workspace and aseptic technique; pre-filled syringes for commonly used anaesthetic drugs; large legible colour coded drug labels; a barcode reader linked to a computer, speakers, and touch screen to provide automatic auditory and visual verification of selected drugs immediately before each administration; automatic compilation of an anaesthetic record; an on-screen and audible warning if an antibiotic has not been administered within 15 minutes of the start of anaesthesia; and certain procedural rules-notably, scanning the label before each drug administration) versus conventional practice in drug administration with a manually compiled anaesthetic record. MAIN OUTCOME MEASURES: Primary: composite of errors in the recording and administration of intravenous drugs detected by direct observation and by detailed reconciliation of the contents of used drug vials against recorded administrations; and lapses in responding to an intermittent visual stimulus (vigilance latency task). Secondary: outcomes in patients; analyses of anaesthetists' tasks and assessments of workload; evaluation of the legibility of anaesthetic records; evaluation of compliance with the procedural rules of the new system; and questionnaire based ratings of the respective systems by participants. RESULTS: The overall mean rate of drug errors per 100 administrations was 9.1 (95% confidence interval 6.9 to 11.4) with the new system (one in 11 administrations) and 11.6 (9.3 to 13.9) with conventional methods (one in nine administrations) (P = 0.045 for difference). Most were recording errors, and, though fewer drug administration errors occurred with the new system, the comparison with conventional methods did not reach significance. Rates of errors in drug administration were lower when anaesthetists consistently applied two key principles of the new system (scanning the drug barcode before administering each drug and keeping the voice prompt active) than when they did not: mean 6.0 (3.1 to 8.8) errors per 100 administrations v 9.7 (8.4 to 11.1) respectively (P = 0.004). Lapses in the vigilance latency task occurred in 12% (58/471) of cases with the new system and 9% (40/473) with conventional methods (P = 0.052). The records generated by the new system were more legible, and anaesthetists preferred the new system, particularly in relation to long, complex, and emergency cases. There were no differences between new and conventional systems in respect of outcomes in patients or anaesthetists' workload. CONCLUSIONS: The new system was associated with a reduction in errors in the recording and administration of drugs in anaesthesia, attributable mainly to a reduction in recording errors. Automatic compilation of the anaesthetic record increased legibility but also increased lapses in a vigilance latency task and decreased time spent watching monitors. Trial registration Australian New Zealand Clinical Trials Registry No 12608000068369.


Subject(s)
Anesthesia , Forms and Records Control/organization & administration , Medication Errors/prevention & control , Pharmacy Service, Hospital/organization & administration , Adult , Aged , Clinical Protocols , Female , Guideline Adherence , Humans , Male , Medical Records , Middle Aged , Prospective Studies , Workload
2.
Chronobiol Int ; 28(9): 834-40, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21936617

ABSTRACT

This clinical methods comparison study describes the difference between light levels measured at the wrist (Actiwatch-L) and at the eye (Daysimeter) in a postoperative in-patient population. The mean difference between the two devices was less than 10 lux at light levels less than 5000 lux. Agreement between the devices was found to decrease as eye-level light exposure increased. Measurements at eye level of 5000 lux or more corresponded to a difference between the devices of greater than 100 lux. Agreement between the eye- and wrist-level light measurements also appears to be influenced by time of day. During the day, the measurement differences were on average 50 lux higher at eye level, whereas at night they were on average 50 lux lower. Although the wrist-level monitor was found to underestimate light exposure at higher light levels, it was well tolerated by participants in the clinical setting. In contrast, the eye-level monitor was cumbersome and uncomfortable for the patients to wear. This study provides light-exposure data on patients in real conditions in the clinical environment. The results show that wrist-level monitoring provides an adequate estimate of light exposure for in-hospital circadian studies.


Subject(s)
Circadian Rhythm/physiology , Environmental Monitoring/instrumentation , Humans , Inpatients , Light , Lighting , Photoperiod , Postoperative Period , Wrist
SELECTION OF CITATIONS
SEARCH DETAIL