Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 41(35): 10715-23, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-22847737

ABSTRACT

The synthesis and characterization of low-generation pyridylimine Rh(I) metallodendrimers is described. These metallodendrimers were obtained via a Schiff base condensation of tris-2-(aminoethyl)amine with 2-pyridinecarboxaldehyde to afford the tris-2-(2-pyridylimine ethyl) amine ligand (1). Subsequent complexation reactions with [RhCl(CO)(2)](2) and [RhCl(COD)](2) yielded the corresponding metal-containing dendrimers containing -RhCl(CO) and -Rh(COD) moieties on the periphery. These new rhodium metallodendrimers (2 and 3) and their precursor ligand (1) are thermally stable and have been characterized using (1)H NMR, (13)C NMR, (31)P NMR, FT-IR spectroscopy, elemental analysis as well as mass spectrometry. The Rh(I) metallodendrimers are highly active and chemo- and regioselective in the hydroformylation of 1-octene. Aldehydes were favoured at moderate to high temperatures (95 °C and 75 °C) and pressure (30 bars), while more iso-octenes were formed at low temperature (55 °C) and pressures (5 and 10 bars). The mononuclear analogues (5 and 6) also produced more aldehydes (albeit showing catalyst decomposition at 95 °C and 75 °C, 30 bars) and these aldehydes were mostly branched.

2.
Biochem Biophys Res Commun ; 300(1): 81-6, 2003 Jan 03.
Article in English | MEDLINE | ID: mdl-12480524

ABSTRACT

The most potent low molecular weight inhibitors of pancreatic RNase superfamily enzymes reported to date are synthetic derivatives of adenosine 5(')-pyrophosphate. Here we have investigated the effects of six natural nucleotides that also incorporate this moiety (NADP(+), NADPH, ATP, Ap(3)A, Ap(4)A, and Ap(5)A) on the activities of RNase A and two of its homologues, eosinophil-derived neurotoxin and angiogenin. With eosinophil-derived neurotoxin and angiogenin, Ap(5)A is comparable to the tightest binding inhibitors identified previously (K(i) values at pH 5.9 are 370 nM and 100 microM, respectively); it ranks among the strongest small antagonists of RNase A as well (K(i)=230 nM). The K(i) for NADPH with angiogenin is similar to that of Ap(5)A. These findings suggest that Ap(5)A and NADPH may serve as useful new leads for inhibitor design. Examination of inhibition under physiological conditions indicates that NADPH, ATP, and Ap(5)A may suppress intracellular RNase activity significantly in vivo.


Subject(s)
Adenine Nucleotides/pharmacology , Enzyme Inhibitors/pharmacology , Ribonucleases/antagonists & inhibitors , Adenine Nucleotides/chemistry , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/pharmacology , Animals , Cattle , Dinucleoside Phosphates/chemistry , Dinucleoside Phosphates/pharmacology , Enzyme Inhibitors/chemistry , Eosinophil-Derived Neurotoxin , Humans , In Vitro Techniques , Kinetics , Macromolecular Substances , Models, Molecular , NADP/chemistry , NADP/pharmacology , Ribonuclease, Pancreatic/antagonists & inhibitors , Ribonuclease, Pancreatic/chemistry , Ribonucleases/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...