Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 18648, 2020 10 29.
Article in English | MEDLINE | ID: mdl-33122718

ABSTRACT

Very early onset inflammatory bowel disease (VEOIBD) denotes children with onset of IBD before six years of age. A number of monogenic disorders are associated with VEOIBD including tetratricopeptide repeat domain 7A (TTC7A) deficiency. TTC7A-deficiency is characterized by apoptotic colitis in milder cases with severe intestinal atresia and immunodeficiency in cases with complete loss of protein. We used whole exome sequencing in a VEOIBD patient presenting with colitis characterized by colonic apoptosis and no identified known VEOIBD variants, to identify compound heterozygous deleterious variants in the Ubiquitin protein ligase E3 component N-recognin 5 (UBR5) gene. Functional studies demonstrated that UBR5 co-immunoprecipitates with the TTC7A and the UBR5 variants had reduced interaction between UBR5 and TTC7A. Together this implicates UBR5 in regulating TTC7A signaling in VEOIBD patients with apoptotic colitis.


Subject(s)
Inflammatory Bowel Diseases/metabolism , Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Age of Onset , Amino Acid Sequence , Child, Preschool , Humans , Male , Protein Binding , Sequence Homology, Amino Acid , Signal Transduction
2.
Gastroenterology ; 158(4): 1000-1015, 2020 03.
Article in English | MEDLINE | ID: mdl-31743734

ABSTRACT

BACKGROUND & AIMS: Mutations in the tetratricopeptide repeat domain 7A gene (TTC7A) cause intestinal epithelial and immune defects. Patients can become immune deficient and develop apoptotic enterocolitis, multiple intestinal atresia, and recurrent intestinal stenosis. The intestinal disease in patients with TTC7A deficiency is severe and untreatable, and it recurs despite resection or allogeneic hematopoietic stem cell transplant. We screened drugs for those that prevent apoptosis of in cells with TTC7A deficiency and tested their effects in an animal model of the disease. METHODS: We developed a high-throughput screen to identify compounds approved by the US Food and Drug Administration that reduce activity of caspases 3 and 7 in TTC7A-knockout (TTC7A-KO) HAP1 (human haploid) cells and reduce the susceptibility to apoptosis. We validated the effects of identified agents in HeLa cells that stably express TTC7A with point mutations found in patients. Signaling pathways in cells were analyzed by immunoblots. We tested the effects of identified agents in zebrafish with disruption of ttc7a, which develop intestinal defects, and colonoids derived from biopsy samples of patients with and without mutations in TTC7A. We performed real-time imaging of intestinal peristalsis in zebrafish and histologic analyses of intestinal tissues from patients and zebrafish. Colonoids were analyzed by immunofluorescence and for ion transport. RESULTS: TTC7A-KO HAP1 cells have abnormal morphology and undergo apoptosis, due to increased levels of active caspases 3 and 7. We identified drugs that increased cell viability; leflunomide (used to treat patients with inflammatory conditions) reduced caspase 3 and 7 activity in cells by 96%. TTC7A-KO cells contained cleaved caspase 3 and had reduced levels of phosphorylated AKT and X-linked inhibitor of apoptosis (XIAP); incubation of these cells with leflunomide increased levels of phosphorylated AKT and XIAP and reduced levels of cleaved caspase 3. Administration of leflunomide to ttc7a-/- zebrafish increased gut motility, reduced intestinal tract narrowing, increased intestinal cell survival, increased sizes of intestinal luminal spaces, and restored villi and goblet cell morphology. Exposure of patient-derived colonoids to leflunomide increased cell survival, polarity, and transport function. CONCLUSIONS: In a drug screen, we identified leflunomide as an agent that reduces apoptosis and activates AKT signaling in TTC7A-KO cells. In zebrafish with disruption of ttc7a, leflunomide restores gut motility, reduces intestinal tract narrowing, and increases intestinal cell survival. This drug might be repurposed for treatment of TTC7A deficiency.


Subject(s)
Apoptosis/drug effects , Enzyme Inhibitors/pharmacology , Inflammatory Bowel Diseases/drug therapy , Leflunomide/pharmacology , Proteins/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Apoptosis Regulatory Proteins/metabolism , Colon/cytology , Gene Knockout Techniques , Haploidy , Humans , Inflammatory Bowel Diseases/genetics , Phosphorylation/drug effects , X-Linked Inhibitor of Apoptosis Protein/metabolism
3.
Cell Mol Gastroenterol Hepatol ; 7(3): 555-570, 2019.
Article in English | MEDLINE | ID: mdl-30553809

ABSTRACT

The increasing incidence of pediatric inflammatory bowel disease, coupled with the efficiency of whole-exome sequencing, has led to the identification of tetratricopeptide repeat domain 7A (TTC7A) as a steward of intestinal health. TTC7A deficiency is an autosomal-recessively inherited disease. In the 5 years since the original description, more than 50 patients with more than 20 distinct disease-causing TTC7A mutations have been identified. Patients show heterogenous intestinal and immunologic disease manifestations, including but not limited to multiple intestinal atresias, very early onset inflammatory bowel disease, loss of intestinal architecture, apoptotic enterocolitis, combined immunodeficiency, and various extraintestinal features related to the skin and/or hair. The focus of this review is to highlight trends in patient phenotypes and to consolidate functional data related to the role of TTC7A in maintaining intestinal homeostasis. TTC7A deficiency is fatal in approximately two thirds of patients, and, as more patients continue to be discovered, elucidating the comprehensive role of TTC7A could show druggable targets that may benefit the growing cohort of individuals suffering from inflammatory bowel disease.


Subject(s)
Intestines/physiology , Proteins/metabolism , Animals , Apoptosis , Disease Models, Animal , Humans , Models, Biological , Proteins/genetics , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...