Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-486561

ABSTRACT

The SARS-CoV-2 spike protein is the target of neutralizing antibodies and the immunogen used in all currently approved vaccines. The global spread of the virus has resulted in emergence of lineages which are of concern for the effectiveness of immunotherapies and vaccines based on the early Wuhan isolate. Here we describe two SARS-CoV-2 isolates with large deletions in the N-terminal domain (NTD) of the spike. Cryo-EM structural analysis showed that the deletions result in complete reshaping of the antigenic surface of the NTD supersite. The remodeling of the NTD affects binding of all tested NTD-specific antibodies in and outside of the NTD supersite for both spike variants. A unique escape mechanism with high antigenic impact observed in the {Delta}N135 variant was based on the loss of the Cys15-Cys136 disulfide due to the P9L-mediated shift of the signal peptide cleavage site and deletion of residues 136-144. Although the observed large loop and disulfide deletions are rare, similar modifications became independently established in several other lineages, highlighting the possibility of a general escape mechanism via the NTD supersite. The observed plasticity of the NTD foreshadows its broad potential for immune escape with the continued spread of SARS-CoV-2.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-482636

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant sparked concern due to its fast spread and the unprecedented number of mutations in the spike protein that enables it to partially evade spike-based COVID-19 vaccine-induced humoral immunity. In anticipation of a potential need for an Omicron spike-based vaccine, we generated an Ad26 vector encoding an Omicron (BA.1) spike protein (Ad26.COV2.S.529). Ad26.COV2.S.529 encodes for a prefusion stabilized spike protein, similar to the current COVID-19 vaccine Ad26.COV2.S encoding the Wuhan-Hu-1 spike protein. We verified that spike expression by Ad26.COV2.S.529 was comparable to Ad26.COV2.S. Immunogenicity of Ad26.COV2.S.529 was then evaluated in naive mice and SARS-CoV-2 Wuhan-Hu-1 spike pre-immunized hamsters. In naive mice, Ad26.COV2.S.529 elicited robust neutralizing antibodies against SARS-CoV-2 Omicron (BA.1) but not to SARS-CoV-2 Delta (B.1.617.2), while the opposite was observed for Ad26.COV2.S. In pre-immune hamsters, Ad26.COV2.S.529 vaccination resulted in robust increases in neutralizing antibody titers against both SARS-CoV-2 Omicron (BA.1) and Delta (B.1.617.2), while Ad26.COV2.S vaccination only increased neutralizing antibody titers against the Delta variant. Our data imply that Ad26.COV2.S.529 can both expand and boost a Wuhan-Hu-1 spike-primed humoral immune response to protect against distant SARS-CoV-2 variants.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-450707

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve and recently emerging variants with substitutions in the Spike protein have led to growing concerns over increased transmissibility and decreased vaccine coverage due to immune evasion. Here, sera from recipients of a single dose of our Ad26.COV2.S COVID-19 vaccine were tested for neutralizing activity against several SARS-CoV-2 variants of concern. All tested variants demonstrated susceptibility to Ad26.COV2.S-induced serum neutralization albeit mainly reduced as compared to the B.1 strain. Most pronounced reduction was observed for the B.1.351 (Beta; 3.6-fold) and P.1 (Gamma; 3.4-fold) variants that contain similar mutations in the receptor-binding domain (RBD) while only a 1.6-fold reduction was observed for the widely spreading B.1.617.2 (Delta) variant.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-197814

ABSTRACT

The trimeric spike (S) protein of SARS-CoV-2 is the primary focus of most vaccine design and development efforts. Due to intrinsic instability typical of class I fusion proteins, S tends to prematurely refold to the post-fusion conformation, compromising immunogenic properties and prefusion trimer yields. To support ongoing vaccine development efforts, we report the structure-based design of soluble S trimers, with increased yields and stabilities, based on introduction of single point mutations and disulfide-bridges. We identify two regions in the S-protein critical for the proteins stability: the heptad repeat region 1 of the S2 subunit and subunit domain 1 at the interface with S2. We combined a minimal selection of mostly interprotomeric mutations to create a stable S-closed variant with a 6.4-fold higher expression than the parental construct while no longer containing a heterologous trimerization domain. The cryo-EM structure reveals a correctly folded, predominantly closed pre-fusion conformation. Highly stable and well producing S protein and the increased understanding of S protein structure will support vaccine development and serological diagnostics.

SELECTION OF CITATIONS
SEARCH DETAIL
...