Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
Parasitol Res ; 122(12): 3027-3035, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37796293

ABSTRACT

Leishmania (Mundinia) martiniquensis is a newly described species that causes human visceral, disseminated, and mucocutaneous leishmaniases. Amphotericin B deoxycholate (AmpB) is the first-line drug for the treatment of leishmaniasis in Thailand; however, several relapse cases of leishmaniasis caused by L. martiniquensis have been documented. In this study, in vitro susceptibility to AmpB and miltefosine (MIL) of wild-type (before treatment, LSCM1) and two AmpB-resistant L. martiniquensis strains (an in vitro-induced AmpB-resistant strain, AmpBRP2i, and a relapse strain, LSCM1-6) were determined. Results reveal that the IC50 value and resistance index against both drugs of promastigotes and intracellular amastigotes of the AmpBRP2i and LSCM1-6 strains were statistically significantly higher than those of the LSCM1 strain suggesting that cross-resistance with MIL occurred in both AmpB-resistant strains. The results of this study advocate further investigation into mechanisms that involve the complex nature of AmpB/MIL resistance in L. martiniquensis and development of effective methods for the identification of the AmpB-resistant parasites to help delivery of appropriate treatments for patients and for epidemiological surveys to survey the potential spread of drug-resistant strains.


Subject(s)
Antiprotozoal Agents , Leishmania , Leishmaniasis, Visceral , Leishmaniasis , Humans , Amphotericin B/pharmacology , Amphotericin B/therapeutic use , Leishmaniasis/drug therapy , Phosphorylcholine/pharmacology , Phosphorylcholine/therapeutic use , Chronic Disease , Recurrence , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Leishmaniasis, Visceral/parasitology
2.
Front Microbiol ; 14: 1235254, 2023.
Article in English | MEDLINE | ID: mdl-37675418

ABSTRACT

The prevalence of autochthonous leishmaniasis in Thailand is increasing but the natural vectors that are responsible for transmission remain unknown. Experimental in vivo infections in Culicoides spp. with Leishmania (Mundinia) martiniquensis and Leishmania (Mundinia) orientalis, the major causative pathogens in Thailand, have demonstrated that biting midges can act as competent vectors. Therefore, the isolation and detection of Leishmania and other trypanosomatids were performed in biting midges collected at a field site in an endemic area of leishmaniasis in Tha Ruea and a mixed farm of chickens, goats, and cattle in Khuan Phang, Nakhon Si Thammarat province, southern Thailand. Results showed that Culicoides peregrinus was the abundant species (>84%) found in both locations and only cow blood DNA was detected in engorged females. Microscopic examination revealed various forms of Leishmania promastigotes in the foregut of several C. peregrinus in the absence of bloodmeal remnants, indicating established infections. Molecular identification using ITS1 and 3'UTR HSP70 type I markers showed that the Leishmania parasites found in the midges were L. martiniquensis. The infection rate of L. martiniquensis in the collected flies was 2% in Tha Ruea and 6% in Khuan Phang, but no L. orientalis DNA or parasites were found. Additionally, organisms from two different clades of Crithidia, both possibly new species, were identified using SSU rRNA and gGAPDH genes. Choanomastigotes and promastigotes of both Crithidia spp. were observed in the hindgut of the dissected C. peregrinus. Interestingly, midges infected with both L. martiniquensis and Crithidia were found. Moreover, four strains of Crithidia from one of the clades were successfully isolated into culture. These parasites could grow at 37°C in the culture and infect BALB/c mice macrophages but no multiplication was observed, suggesting they are thermotolerant monoxenous trypanosomatids similar to Cr. thermophila. These findings provide the first evidence of natural infection of L. martiniquensis in C. peregrinus supporting it as a potential vector of L. martiniquensis.

3.
PLoS One ; 18(7): e0284330, 2023.
Article in English | MEDLINE | ID: mdl-37486913

ABSTRACT

Mosquitoes transmit pathogens that can cause numerous significant infectious diseases in humans and animals such as malaria, dengue fever, chikungunya fever, and encephalitis. Although the VGG16 model is not one of the most advanced CNN networks, it is reported that a fine-tuned VGG16 model achieves accuracy over 90% when applied to the classification of mosquitoes. The present study sets out to improve the accuracy and robustness of the VGG16 network by incorporating spatial dropout layers to regularize the network and by modifying its structure to incorporate multi-view inputs. Herein, four models are implemented: (A) early-combined, (B) middle-combined, (C) late-combined, and (D) ensemble model. Moreover, a structure for combining Models (A), (B), (C), and (D), known as the classifier, is developed. Two image datasets, including a reference dataset of mosquitoes in South Korea and a newly generated dataset of mosquitoes in Thailand, are used to evaluate our models. Regards the reference dataset, the average accuracy of ten runs improved from 83.26% to 99.77%, while the standard deviation decreased from 2.60% to 0.12%. When tested on the new dataset, the classifier's accuracy was also over 99% with a standard deviation of less than 2%. This indicates that the algorithm achieves high accuracy with low variation and is independent of a particular dataset. To evaluate the robustness of the classifier, it was applied to a small dataset consisting of mosquito images captured under various conditions. Its accuracy dropped to 86.14%, but after retraining with the small dataset, it regained its previous level of precision. This demonstrates that the classifier is resilient to variation in the dataset and can be retrained to adapt to the variation. The classifier and the new mosquito dataset could be utilized to develop an application for efficient and rapid entomological surveillance for the prevention and control of mosquito-borne diseases.


Subject(s)
Chikungunya Fever , Culicidae , Refractive Surgical Procedures , Animals , Humans , Mosquito Vectors , Algorithms
4.
Front Microbiol ; 14: 1156061, 2023.
Article in English | MEDLINE | ID: mdl-37089544

ABSTRACT

Amphotericin B (AmpB) deoxycholate is the available first-line drug used to treat visceral leishmaniasis caused by Leishmania (Mundinia) martiniquensis, however, some cases of AmpB treatment failure have been reported in Thailand. Resistance to drugs is known to affect parasite fitness with a potential impact on parasite transmission but still little is known about the effect of resistance to drugs on L. martiniquensis. Here we aimed to gain insight into the fitness changes occurring after treatment failure or in vitro-induced resistance to AmpB. L. martiniquensis parasites isolated from a patient before (LSCM1) and after relapse (LSCM1-6) were compared for in vitro and in vivo fitness changes together with an in vitro induced AmpB-resistant parasite generated from LSCM1 parasites (AmpBRP2i). Results revealed increased metacyclogenesis of the AmpBPR2i and LSCM1-6 strains (AmpB-resistant strains) compared to the LSCM1 strain and increased fitness with respect to growth and infectivity. The LSCM1-6 and AmpBRP2i strains were present in mice for longer periods compared to the LSCM1 strain, but no clinical signs of the disease were observed. These results suggest that the AmpB-resistant parasites could be more efficiently transmitted to humans and maintained in asymptomatic hosts longer than the susceptible strain. The asymptomatic hosts therefore may represent "reservoirs" for the resistant parasites enhancing transmission. The results in this study advocate an urgent need to search and monitor for AmpB-resistant L. martiniquensis in patients with relapsing leishmaniasis and in asymptomatic patients, especially, in HIV/Leishmania coinfected patients.

5.
Am J Trop Med Hyg ; 108(1): 44-50, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36410322

ABSTRACT

We report an autochthonous case of simple, localized cutaneous leishmaniasis in a healthy 18-month-old girl from southern Thailand. The patient presented with a solitary chronic cutaneous nodular lesion on her left cheek for approximately 1 year. Histopathological dissection of the cheek skin biopsy demonstrated remarkably nodular and interstitial infiltrates of lymphocytes and histiocytes full of intracellular oval-shaped amastigotes, consistent with cutaneous leishmaniasis. The Leishmania promastigotes were also cultured successfully from the lesion biopsy and were designated with the WHO code MHOM/TH/2021/CULE5. Using internal transcribed spacer 1-specific polymerase chain reaction, the parasite DNA was demonstrated in both saliva and lesion biopsy. Based on the BLASTn and phylogenetic analysis, the parasite was identified as Leishmania orientalis, clustered in the Mundinia subgenus. The patient responded well to a 6-week course of oral itraconazole, without recurrence. To our knowledge, this is the fourth case of autochthonous leishmaniasis resulting from L. orientalis and the youngest patient of leishmaniasis ever reported in Thailand. More importantly, we also demonstrate the clinical course of the lesion according to the timeline before and after treatment, which can help physicians better understand and provide an accurate diagnosis with appropriate treatment of this emerging parasitic disease.


Subject(s)
Leishmania , Leishmaniasis, Cutaneous , Humans , Child , Female , Infant , Leishmania/genetics , Thailand , Phylogeny , Leishmaniasis, Cutaneous/diagnosis , Leishmaniasis, Cutaneous/drug therapy , Leishmaniasis, Cutaneous/pathology , Skin/pathology
6.
Front Cell Infect Microbiol ; 12: 992741, 2022.
Article in English | MEDLINE | ID: mdl-36132986

ABSTRACT

Leishmania (Mundinia) orientalis is a human pathogen causing leishmaniasis and studies on the properties of metacyclic promastigotes, the parasite's infective stage, are required for a better understanding of its transmission and infection. However, information on cultivation for mass production of L. orientalis metacyclic promastigotes and factors that stimulate their metacyclogenesis is limited. Therefore, the objective of this study was to develop a suitable methodology for generating promastigote cultures containing a high proportion and number of L. orientalis metacyclic promastigotes. Various media, i.e., Schneider's insect medium, Medium 199 and Grace's insect medium, supplemented with various quantities of dithiothreitol, Basal Medium Eagle vitamins, pooled human urine, and fetal bovine serum, were optimized for metacyclogenesis. The results revealed that the optimum culture medium and conditions of those tested were Schneider's insect medium supplemented with 100 µM dithiothreitol, 1% (v/v) Basal Medium Eagle vitamins, 2% (v/v) pooled human urine, and 10% (v/v) fetal bovine serum, pH 5.0 at 26°C. We also demonstrated that L. orientalis metacyclic promastigotes could be purified and enriched by negative selection using peanut lectin. Under these culture conditions, the highest yield of metacyclic promastigotes was obtained with a significantly higher percentage of parasite survival, resistance to complement-mediated lysis, and infection index in THP-1 macrophage cells compared to parasites cultured without media supplements at neutral pH. This is the first report providing a reliable method for mass production of L. orientalis metacyclic promastigotes for in vivo infections and other experimental studies of this emerging parasite in the future.


Subject(s)
Leishmania , Dithiothreitol , Humans , Peanut Agglutinin , Serum Albumin, Bovine , Vitamins
7.
PLoS One ; 17(2): e0263268, 2022.
Article in English | MEDLINE | ID: mdl-35213563

ABSTRACT

Morphological characteristics of eggshells are important in sand fly ootaxonomy. In this study, eggshells from Phlebotomus stantoni Newstead, Sergentomyia khawi (Raynal), and Grassomyia indica (Theodor) sand flies collected in Chiang Mai province, Thailand were examined and characterized using light microscopy (LM) and scanning electron microscopy (SEM). Then, eggshell morphology of these three species was described for the first time. Each gravid female was forced to lay eggs by decapitation and the eggs were collected for SEM analysis. Egg laying females were identified by morphological examination and molecular typing using cytochrome b (Cytb) as a molecular marker. The chorionic sculpturing of Ph. stantoni eggs combines two patterns on the same egg: unconnected parallel ridges and reticular patterns. Sergentomyia khawi and Gr. indica have similar chorionic polygonal patterns, but their exochorionic morphology and aeropylar area are different. Results indicate that eggshell morphological characteristics such as chorionic pattern, exochorionic morphology, inter-ridge/boundary area, aeropylar area (including the number of aeropyles) and basal layer, can be useful to develop morphological identification keys of eggs. These can serve as an additional tool to distinguish species of sand flies. In addition, the chorionic sculpturing of the eggs of the three species of sand flies observed by LM is useful for species identification in gravid females with spermathecae obscured by eggs.


Subject(s)
Cytochromes b/ultrastructure , Egg Shell/ultrastructure , Psychodidae/ultrastructure , Species Specificity , Animals , Chorion/chemistry , Chorion/ultrastructure , Cytochromes b/chemistry , Cytochromes b/isolation & purification , Egg Shell/anatomy & histology , Eggs , Female , Microscopy, Electron, Scanning , Oviposition/physiology , Psychodidae/anatomy & histology , Psychodidae/classification
8.
PLoS Negl Trop Dis ; 15(11): e0009982, 2021 11.
Article in English | MEDLINE | ID: mdl-34847144

ABSTRACT

PCR-based methods to amplify the 3' untranslated region (3'-UTR) of the heat shock protein 70 (type I) gene (HSP70-I) have previously been used for typing of Leishmania but not with Leishmania (Mundinia) martiniquensis and L. (Mundinia) orientalis, newly identified human pathogens. Here, the 3'-UTRs of HSP70-I of L. martiniquensis, L. orientalis, and 10 other species were sequenced and analyzed. PCR-Restriction Fragment Length Polymorphism (RFLP) analysis targeting the 3'-UTR of HSP70-I was developed. Also, the detection limit of HSP70-I-3'-UTR PCR methods was compared with two other commonly used targets: the 18S small subunit ribosomal RNA (SSU-rRNA) gene and the internal transcribed spacer 1 region of the rRNA (ITS1-rRNA) gene. Results showed that HSP70-I-3'-UTR PCR methods could be used to identify and differentiate between L. martiniquensis (480-2 bp) and L. orientalis (674 bp) and distinguished them from parasites of the subgenus Viannia and of the subgenus Leishmania. PCR-RFLP patterns of the 3'-UTR of HSP70-I fragments digested with BsuRI restriction enzyme successfully differentiated L. martiniquensis, L. orientalis, L. braziliensis, L. guyanensis = L. panamensis, L. mexicana = L. aethiopica = L. tropica, L. amazonensis, L. major, and L. donovani = L. infantum. For the detection limit, the HSP70-I-3'-UTR PCR method could detect the DNA of L. martiniquensis and L. orientalis at the same concentration, 1 pg/µL, at a similar level to the SSU-rRNA PCR. The PCR that amplified ITS1-rRNA was more sensitive (0.01 pg/µL) than that of the HSP70-I-3'-UTR PCR. However, the sizes of both SSU-rRNA and ITS1-rRNA PCR amplicons could not differentiate between L. martiniquensis and L. orientalis. This is the first report of using HSP70-I-3'-UTR PCR based methods to identify the parasites causing leishmaniasis in Thailand. Also, the BsuRI-PCR-RFLP method can be used for differentiating some species within other subgenera.


Subject(s)
3' Untranslated Regions , HSP70 Heat-Shock Proteins/genetics , Leishmania/genetics , Leishmania/isolation & purification , Leishmaniasis/parasitology , Molecular Typing/methods , Polymerase Chain Reaction/methods , Protozoan Proteins/genetics , Humans , Leishmania/classification , Thailand
9.
Sci Data ; 8(1): 234, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34489462

ABSTRACT

We provide the raw and processed data produced during the genome sequencing of isolates from six species of parasites from the sub-family Leishmaniinae: Leishmania martiniquensis (Thailand), Leishmania orientalis (Thailand), Leishmania enriettii (Brazil), Leishmania sp. Ghana, Leishmania sp. Namibia and Porcisia hertigi (Panama). De novo assembly was performed using Nanopore long reads to construct chromosome backbone scaffolds. We then corrected erroneous base calling by mapping short Illumina paired-end reads onto the initial assembly. Data has been deposited at NCBI as follows: raw sequencing output in the Sequence Read Archive, finished genomes in GenBank, and ancillary data in BioSample and BioProject. Derived data such as quality scoring, SAM files, genome annotations and repeat sequence lists have been deposited in Lancaster University's electronic data archive with DOIs provided for each item. Our coding workflow has been deposited in GitHub and Zenodo repositories. This data constitutes a resource for the comparative genomics of parasites and for further applications in general and clinical parasitology.


Subject(s)
Genome, Protozoan , Leishmania/classification , Phylogeny , Genomics , Molecular Sequence Annotation , Repetitive Sequences, Nucleic Acid
10.
Microbiol Resour Announc ; 10(36): e0057421, 2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34498920

ABSTRACT

Leishmania (Mundinia) orientalis is a kinetoplastid parasite first isolated in 2014 in Thailand. We report the complete genome sequence of L. (M.) orientalis, sequenced using combined short-read and long-read technologies. This will facilitate greater understanding of this novel pathogen and its relationship to other members of the subgenus Mundinia.

11.
Microbiol Resour Announc ; 10(29): e0043921, 2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34292068

ABSTRACT

We present the LGAAP computational pipeline, which was successfully used to assemble six genomes of the parasite subfamily Leishmaniinae to chromosome-scale completeness from a combination of long- and short-read sequencing data. LGAAP is open source, and we suggest that it may easily be ported for assembly of any genome of comparable size (∼35 Mb).

12.
Microbiol Resour Announc ; 10(24): e0005821, 2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34137631

ABSTRACT

Leishmania (Mundinia) martiniquensis is a kinetoplastid parasite that was first isolated in 1995 on Martinique. We report the first complete genome for Leishmania martiniquensis from Asia, isolate LSCM1, strain LV760, which was sequenced using combined short-read and long-read technologies. This will facilitate greater understanding of the evolution of the geographically dispersed subgenus Mundinia.

13.
Parasitol Res ; 119(9): 3041-3051, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32779021

ABSTRACT

Our objective was to investigate clinical progression, presence of parasites and DNAs, parasite loads, and histological alterations in BALB/c mice and Syrian golden hamsters after intraperitoneal inoculation with Leishmania (Mundinia) martiniquensis promastigotes with a goal to choosing an appropriate animal model for visceral leishmaniasis. Infections were monitored for 16 weeks. Infected BALB/c mice were asymptomatic during the infection course. Parasite DNAs were detected in the liver at week 8 of infection, followed by clearance in most animals at week 16; whereas in the spleen, parasite DNAs were detected until week 16. These results are correlated to those obtained measuring parasite loads in both organs. No parasite DNA and no alteration in the bone marrow were observed indicating that no dissemination occurred. These results suggest the control of visceralization of L. martiniquensis by BALB/c mice. In hamsters, weight loss, cachexia, and fatigue were observed after week 11. Leishmania martiniquensis parasites were observed in tissue smears of the liver, spleen, and bone marrow by week 16. Parasite loads correlated with those from the presence of parasites and DNAs in the examined tissues. Alterations in the liver with nuclear destruction and cytoplasmic degeneration of infected hepatocytes, presence of inflammatory infiltrates, necrosis of hepatocytes, and changes in splenic architecture and reduction and deformation of white pulp in the spleen were noted. These results indicate a chronic form of visceral leishmaniasis indicating that the hamster is a suitable animal model for the study of pathological features of chronic visceral leishmaniasis caused by L. martiniquensis.


Subject(s)
Leishmania/physiology , Leishmaniasis, Visceral/parasitology , Animals , Cricetinae , Disease Models, Animal , Humans , Leishmania/genetics , Liver/parasitology , Male , Mesocricetus , Mice , Mice, Inbred BALB C , Parasite Load , Spleen/parasitology
14.
Parasite Epidemiol Control ; 9: e00143, 2020 May.
Article in English | MEDLINE | ID: mdl-32300665

ABSTRACT

Autochthonous leishmaniasis caused by Leishmania martiniquensis cases in Thailand have dramatically increased in the recent years. L. martiniquensis infection primarily occurs in immunocompromised patients, especially AIDS patients. In Thailand, amphotericin B is the only drug available for leishmaniasis treatment, and some patients relapse after amphotericin B therapy. Moreover, the efficacy of anti-leishmanial drugs against L. martiniquensis has not been evaluated to date. In this study, we determined the efficacy of various anti-leishmanial drugs against the promastigote and intracellular amastigote stages of L. martiniquensis using a colorimetric assay. Two strains (CU1 and CU1R1) were isolated from leishmaniasis HIV co-infected patient from Songkhla province, southern Thailand. The CU1 strain was isolated from the patient in 2011, and CU1R1 was isolated from the same patient in 2013, when he was diagnosed as relapse leishmaniasis. The third strain (LSCM1) used in this study has been isolated from immunocompetent patient from Lamphun province, northern Thailand. All strains were identified as L. martiniquensis by sequencing of ribosomal RNA ITS-1 and large subunit of RNA polymerase II gene. Bioassays have been conducted both with promastigote and intracellular amastigote stages of the parasite. All L. martiniquensis strains have been tested against amphotericin B, miltefosine and pentamidine to determine the efficacy of the drugs against the parasite by using a PrestoBlue. The efficacy of miltefosine and pentamidine exhibit no significant difference between each stage of L. martiniquensis among all strains. Surprisingly, the promastigote and intracellular amastigote of the CU1R1 isolate, which was isolated from a relapsed patient after amphotericin B treatment, exhibited a two-fold increased inhibitory concentration (IC50) against amphotericin B compared with other strains, and the difference was statistically significant (p < 0.05). Moreover, intracellular amastigotes isolated from CU1R1 exhibited slightly increased susceptibility to amphotericin B compared with the promastigote (p < 0.05). The result of this experiment is a scientific evident to support that in case of relapsed leishmaniasis caused by L. martiniquensis, increasing dosage of amphotericin B is essential. Moreover, this study also determined efficacy of other anti-leishmanial drugs for treatment the leishmaniasis in Thailand in case of these drugs are available in the country and the clinicians should have alternative drugs for treatment leishmaniasis in Thailand apart from amphotericin B.

15.
Pathogens ; 9(1)2020 Jan 09.
Article in English | MEDLINE | ID: mdl-31936536

ABSTRACT

Leishmania (Mundinia) martiniquensis is a causative agent of visceral leishmaniasis, but in HIV-infected patients both visceral and disseminated cutaneous leishmaniasis are presented. Recurrence of the disease after treatment has been reported in some cases indicating that improved chemotherapy is required. In this study, the susceptibility of L. martiniquensis to Amphotericin B deoxycholate (AmB), allicin, and andrographolide was evaluated and the synergistic effects of allicin or andrographolide combined with AmB against L. martiniquensis intracellular amastigotes in mouse peritoneal exudate macrophages (PEMs) were investigated in vitro for the first time. The results showed that L. martiniquensis was highly susceptible to AmB as expected, but allicin and andrographolide had selectivity index (SI) values greater than 10, indicating promise in both compounds for treatment of host cells infected with L. martiniquensis. Four AmB/allicin combinations presented combination index (CI) values less than 1 (0.58-0.68) for intracellular amastigotes indicating synergistic effects. The combination with the highest dose reduction index (DRI) allowed an approximately four-fold reduction of AmB use in that combination. No synergistic effects were observed in AmB/andrographolide combinations. The data provided in this study leads for further study to develop novel therapeutic agents and improve the treatment outcome for leishmaniasis caused by this Leishmania species.

16.
Acta Trop ; 199: 105157, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31491400

ABSTRACT

Leishmania (Mundinia) orientalis is a newly described species causing human leishmaniasis in Thailand whose natural vector is unknown. L. orientalis infections in sand flies and/or biting midges under laboratory conditions have not been previously investigated. In this study, the development of L. orientalis in two experimental vectors, Lutzomyia longipalpis sand flies and Culicoides sonorensis biting midges was investigated for the first time using light microscopy, scanning electron microscopy, and histological examination. The results showed that L. orientalis was unable to establish infection in Lu. longipalpis. No parasites were found in the sand fly gut 4 days post-infected blood meal (PIBM). In contrast, the parasite successfully established infection in C. sonorensis. The parasites differentiated from amastigotes to procyclic promastigotes in the abdominal midgut (AMG) on day 1 PIBM. On day 2 PIBM, nectomonad promastigotes were observed in the AMG and migrated to the thoracic midgut (TMG). Leptomonad promastigotes appeared at the TMG on day 3 PIBM. Clusters of leptomonad promastigotes and metacyclic promastigotes colonized around the stomodeal valve with the accumulation of a promastigote secretory gel-like material from day 3 PIBM onwards. Haptomonad-like promastigotes were observed from day 5 PIBM, and the proportion of metacyclic promastigotes reached 23% on day 7 PIBM. The results suggest that biting midges or other sand fly genera or species might be vectors of L. orientalis.


Subject(s)
Ceratopogonidae/parasitology , Leishmania/growth & development , Psychodidae/parasitology , Animals , Digestive System/parasitology , Humans , Insect Vectors , Leishmaniasis/transmission
17.
Parasitol Res ; 118(8): 2353-2359, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31263951

ABSTRACT

Simulium dermatitis is an IgE-mediated skin reaction in animals and humans caused by the bites of black flies. Although Simulium nigrogilvum has been incriminated as the main human-biting black fly species in Thailand, information on its salivary allergens is lacking. Salivary gland extract of S. nigrogilvum females was subjected to sodium dodecylsulfate-polyacrylamide gel electrophoresis, and the separated components were applied onto nitrocellulose membranes for immunoblotting, which was performed by probing the protein blots with sera from 17 individuals who were allergic to the bites of S. nigrogilvum. IgE-reactive protein bands were characterized further by liquid chromatography-mass spectrometry (LC-MS/MS) analysis. Nine protein bands (79, 42, 32, 25, 24, 22, 15, 13, and 11 kDa) were recognized in the serum of the subjects. Four of the nine protein bands (32, 24, 15, and 11 kDa) showed IgE reactivity in all (100%) of the tested sera, and they were identified as salivary secreted antigen 5-related protein, salivary serine protease, erythema protein, and hypothetical secreted protein, respectively. Three other proteins, salivary serine protease (25 kDa), salivary D7 secreted protein (22 kDa), and hypothetical protein (13 kDa), reacted with > 50% of the sera. The relevance of the identified protein bands as allergens needs to be confirmed by using pure recombinant proteins, either in the in vivo skin prick test or in vitro detection of the specific IgE in the serum samples of allergic subjects. This will be useful for the rational design of component-resolved diagnosis and allergen immunotherapy for the allergy mediated by the bites of black flies.


Subject(s)
Bites and Stings/immunology , Galectin 3/immunology , Insect Proteins/chemistry , Salivary Glands/chemistry , Simuliidae/physiology , Allergens/chemistry , Allergens/immunology , Animals , Bites and Stings/parasitology , Chromatography, Liquid , Electrophoresis, Polyacrylamide Gel , Female , Galectin 3/chemistry , Humans , Immunoglobulin E/immunology , Insect Proteins/immunology , Salivary Glands/immunology , Simuliidae/chemistry , Simuliidae/immunology , Tandem Mass Spectrometry , Thailand
18.
Parasitol Res ; 118(6): 1885-1897, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30972571

ABSTRACT

Leishmania (Mundinia) orientalis is a recently described new species that causes leishmaniasis in Thailand. To facilitate characterization of this new species, an in vitro culture system to generate L. orientalis axenic amastigotes was developed. In vitro culture conditions of the axenic culture-derived amastigotes were optimized by manipulation of temperature and pH. Four criteria were used to evaluate the resulting L. orientalis axenic amastigotes, i.e., morphology, zymographic analysis of nucleases, cyclic transformation, and infectivity to the human monocytic cell line (THP-1) cells. Results revealed that the best culture condition for L. orientalis axenic amastigotes was Grace's insect medium supplemented with FCS 20%, 2% human urine, 1% BME vitamins, and 25 µg/ml gentamicin sulfate, pH 5.5 at 35 °C. For promastigotes, the condition was M199 medium, 10% FCS supplemented with 2% human urine, 1% BME vitamins, and 25 µg/ml gentamicin sulfate, pH 6.8 at 26 °C. Morphological characterization revealed six main stages of the parasites including amastigotes, procyclic promastigotes, nectomonad promastigotes, leptomonad promastigotes, metacyclic promastigotes, and paramastigotes. Also, changes in morphology during the cycle were accompanied by changes in zymographic profiles of nucleases. The developmental cycle of L. orientalis in vitro was complete in 12 days using both culture systems. The infectivity to THP-1 macrophages and intracellular growth of the axenic amastigotes was similar to that of THP-1 derived intracellular amastigotes. These results confirmed the successful axenic cultivation of L. orientalis amastigotes. The axenic amastigotes and promastigotes can be used for further study on infection in permissive vectors and animals.


Subject(s)
Culture Media/chemistry , Leishmania/growth & development , Life Cycle Stages , Macrophages/parasitology , Animals , Cell Line , Humans , Leishmaniasis/parasitology , Temperature , Thailand
19.
Parasit Vectors ; 12(1): 111, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30871604

ABSTRACT

BACKGROUND: A group of insecticides called pyrethroids has been used extensively worldwide and development of pyrethroid resistance within mosquito populations, especially in Aedes aegypti, has rapidly spread through populations. In this study, SDS-PAGE, 2-DE coupled with NanoLC-MS, and bioinformatics were used to analyze the female salivary gland proteins of pyrethroid-susceptible (PMD) and pyrethroid-resistant (PMD-R and UPK-R) strains of Ae. aegypti mosquitoes for the first time. RESULTS: SDS-PAGE analysis revealed that among the three strains at least nine major proteins were detected but one protein band (20 kDa) was found only in the PMD strain. Two-dimensional gel electrophoresis analysis revealed 19 similarly expressed proteins in the salivary glands of the three strains involved in blood-feeding process, stress response, immunogenic response, and metabolic process and five additional major protein spots differentially expressed in the susceptible and resistant strains. Comparative analysis of the expression volume of each protein spot between the PMD and the PMD-R strains showed three downregulated proteins of the PMD-R mosquitoes. For UPK-R strains, six major proteins were downregulated when compared to the PMD strain. Additionally, four downregulated proteins were found in the UPK-R when compared to the PMD-R strain. These results suggest that pyrethroids might induce alteration of salivary gland proteins in resistant mosquitoes. Network analysis by STITCH database 5.0 showed that SRPN23 interacted with sodium and calcium ions, suggesting that SRPN23 might be involved in insecticide resistance. CONCLUSIONS: Information obtained from this study will be useful for further studies on the roles of differentially expressed salivary gland proteins in resistance to insecticides and viral transmission.


Subject(s)
Aedes/metabolism , Insecticide Resistance , Insecticides/pharmacology , Pyrethrins/pharmacology , Salivary Proteins and Peptides/metabolism , Aedes/drug effects , Animals , Female , Salivary Glands/drug effects , Salivary Glands/metabolism
20.
Acta Trop ; 194: 82-88, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30922801

ABSTRACT

Although several studies have reported pharmacological and immunological activity, as well as the role of black flies in transmitting pathogens to vertebrate hosts through salivary glands (SG) during blood feeding, SG proteomes of the anthropophilic black flies in Thailand have never been reported. Therefore, this study determined the SG proteomes of female S. nigrogilvum and S. nodosum. Sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional (2-DE) gels containing separated SG proteins of individual species were subjected to liquid chromatography-tandem mass spectrometry (LCMS/MS) and an orthologous protein search from eukaryotic organism, nematocera and simuliidae databases for total protein identification. SDS-PAGE and protein staining revealed at least 13 and 9 major protein bands in the SGs of female S. nigrogilvum and S. nodosum, respectively, as well as several minor ones. The 2-DE demonstrated a total of 56 and 41 protein spots for S. nigrogilvum and S. nodosum, respectively. Most of the proteins obtained in both species were enzymes involved in blood feeding, including proteases, apyrases, hyaluronidases, aminopeptidase and elastase. The results obtained in this study provided a new body of knowledge for a better understanding on the role of salivary gland proteins in these black fly species in Thailand.


Subject(s)
Insect Bites and Stings , Proteome/genetics , Salivary Glands/metabolism , Salivary Proteins and Peptides/metabolism , Simuliidae/metabolism , Animals , Chromatography, Liquid , Electrophoresis, Polyacrylamide Gel , Female , Gene Expression Regulation , Humans , Species Specificity , Thailand
SELECTION OF CITATIONS
SEARCH DETAIL
...