Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Nat Commun ; 15(1): 3814, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714680

ABSTRACT

Little is known about SARS-CoV-2 infection risk in African countries with high levels of infection-driven immunity and low vaccine coverage. We conducted a prospective cohort study of 349 participants from 52 households in The Gambia between March 2021 and June 2022, with routine weekly SARS-CoV-2 RT-PCR and 6-monthly SARS-CoV-2 serology. Attack rates of 45% and 57% were seen during Delta and Omicron BA.1 waves respectively. Eighty-four percent of RT-PCR-positive infections were asymptomatic. Children under 5-years had a lower incidence of infection than 18-49-year-olds. One prior SARS-CoV-2 infection reduced infection risk during the Delta wave only, with immunity from ≥2 prior infections required to reduce the risk of infection with early Omicron lineage viruses. In an African population with high levels of infection-driven immunity and low vaccine coverage, we find high attack rates during SARS-CoV-2 waves, with a high proportion of asymptomatic infections and young children remaining relatively protected from infection.


Subject(s)
Asymptomatic Infections , COVID-19 , SARS-CoV-2 , Humans , Gambia/epidemiology , COVID-19/epidemiology , COVID-19/virology , COVID-19/immunology , COVID-19/prevention & control , Incidence , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Female , Child, Preschool , Male , Adolescent , Child , Adult , Asymptomatic Infections/epidemiology , Prospective Studies , Middle Aged , Young Adult , Infant
2.
Open Forum Infect Dis ; 11(Suppl 1): S84-S90, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38532959

ABSTRACT

Background: The Gambia, located in West Africa, is one of 7 country sites conducting the Enterics for Global Health (EFGH) Shigella Surveillance Study to establish incidence and consequence of Shigella-associated medically attended diarrhea among children 6-35 months old. Methods: Here we describe the study site and research experience, sociodemographic characteristics of the study catchment area, facilities of recruitment for diarrhea case surveillance, and known care-seeking behavior for diarrheal illness. We also describe The Gambia's healthcare system and financing, current vaccine schedule and Shigella vaccine adaptation, local diarrhea management guidelines and challenges, and antibiotic resistance patterns in the region. Conclusions: The EFGH study in The Gambia will contribute to the multisite network of Shigella surveillance study and prepare the site for future vaccine trials. In addition, the data produced will inform policy makers about prevention strategies and upcoming Shigella vaccine studies among children in this setting.

3.
Open Forum Infect Dis ; 11(Suppl 1): S34-S40, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38532960

ABSTRACT

Background: Quantitative polymerase chain reaction (qPCR) targeting ipaH has been proven to be highly efficient in detecting Shigella in clinical samples compared to culture-based methods, which underestimate Shigella burden by 2- to 3-fold. qPCR assays have also been developed for Shigella speciation and serotyping, which is critical for both vaccine development and evaluation. Methods: The Enterics for Global Health (EFGH) Shigella surveillance study will utilize a customized real-time PCR-based TaqMan Array Card (TAC) interrogating 82 targets, for the detection and differentiation of Shigella spp, Shigella sonnei, Shigella flexneri serotypes, other diarrhea-associated enteropathogens, and antimicrobial resistance (AMR) genes. Total nucleic acid will be extracted from rectal swabs or stool samples, and assayed on TAC. Quantitative analysis will be performed to determine the likely attribution of Shigella and other particular etiologies of diarrhea using the quantification cycle cutoffs derived from previous studies. The qPCR results will be compared to conventional culture, serotyping, and phenotypic susceptibility approaches in EFGH. Conclusions: TAC enables simultaneous detection of diarrheal etiologies, the principal pathogen subtypes, and AMR genes. The high sensitivity of the assay enables more accurate estimation of Shigella-attributed disease burden, which is critical to informing policy and in the design of future clinical trials.

4.
BMC Infect Dis ; 23(1): 471, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37442966

ABSTRACT

BACKGROUND: The prevalence of sexually transmitted infections (STIs) in sub-Saharan Africa is poorly described. We aimed to determine the prevalence of five treatable STIs (Chlamydia trachomatis, Neisseria gonorrhoeae, Trichomonas vaginalis, Mycoplasma genitalium, Treponema pallidum) in a sample of Gambian women from the general population. METHODS: Archived specimens from 420 women aged 15 - 69 years living in The Gambia enrolled in a clinical trial of human papilloma virus vaccine schedules were tested in this study. Urine samples were tested for C. trachomatis, N. gonorrhoeae, T. vaginalis and M. genitalium using a commercially available, open-platform multiplex PCR kit. A fragment of the ompA gene was amplified from C. trachomatis-positive samples and sequenced. Serum samples were tested for T. pallidum using the Chembio DPP Syphilis Screen and Confirm test. RESULTS: Overall, 41/420 (9.8%) women tested positive for at least one STI. 32 (7.6%), 9 (2.1%), 1 (0.2%), 1 (0.2%) and 0 (0.0%) tested positive for T. vaginalis, C. trachomatis, N gonorrhoeae, M. genitalium and T. pallidum, respectively. ompA gene sequence was available from five C. trachomatis infections: four were genovar D,one was genovar G and one was genovar F. CONCLUSIONS: STIs are endemic in The Gambia. Monitoring systems should be established.


Subject(s)
Chlamydia Infections , Gonorrhea , Mycoplasma Infections , Mycoplasma genitalium , Sexually Transmitted Diseases , Female , Humans , Chlamydia Infections/epidemiology , Chlamydia trachomatis/genetics , Gambia/epidemiology , Gonorrhea/epidemiology , Mycoplasma genitalium/genetics , Mycoplasma Infections/epidemiology , Neisseria gonorrhoeae/genetics , Prevalence , Rivers , Sexually Transmitted Diseases/epidemiology , Adolescent , Young Adult , Adult , Middle Aged , Aged
5.
Lancet Glob Health ; 11(3): e414-e424, 2023 03.
Article in English | MEDLINE | ID: mdl-36796985

ABSTRACT

BACKGROUND: COVID-19, caused by SARS-CoV-2, is one of the deadliest pandemics of the past 100 years. Genomic sequencing has an important role in monitoring of the evolution of the virus, including the detection of new viral variants. We aimed to describe the genomic epidemiology of SARS-CoV-2 infections in The Gambia. METHODS: Nasopharyngeal or oropharyngeal swabs collected from people with suspected cases of COVID-19 and international travellers were tested for SARS-CoV-2 with standard RT-PCR methods. SARS-CoV-2-positive samples were sequenced according to standard library preparation and sequencing protocols. Bioinformatic analysis was done using ARTIC pipelines and Pangolin was used to assign lineages. To construct phylogenetic trees, sequences were first stratified into different COVID-19 waves (waves 1-4) and aligned. Clustering analysis was done and phylogenetic trees constructed. FINDINGS: Between March, 2020, and January, 2022, 11 911 confirmed cases of COVID-19 were recorded in The Gambia, and 1638 SARS-CoV-2 genomes were sequenced. Cases were broadly distributed into four waves, with more cases during the waves that coincided with the rainy season (July-October). Each wave occurred after the introduction of new viral variants or lineages, or both, generally those already established in Europe or in other African countries. Local transmission was higher during the first and third waves (ie, those that corresponded with the rainy season), in which the B.1.416 lineage and delta (AY.34.1) were dominant, respectively. The second wave was driven by the alpha and eta variants and the B.1.1.420 lineage. The fourth wave was driven by the omicron variant and was predominantly associated with the BA.1.1 lineage. INTERPRETATION: More cases of SARS-CoV-2 infection were recorded in The Gambia during peaks of the pandemic that coincided with the rainy season, in line with transmission patterns for other respiratory viruses. The introduction of new lineages or variants preceded epidemic waves, highlighting the importance of implementing well structured genomic surveillance at a national level to detect and monitor emerging and circulating variants. FUNDING: Medical Research Unit The Gambia at London School of Hygiene & Tropical Medicine, UK Research and Innovation, WHO.


Subject(s)
COVID-19 , Humans , Gambia/epidemiology , COVID-19/epidemiology , Phylogeny , SARS-CoV-2/genetics , Genomics
6.
Clin Microbiol Infect ; 29(3): 386.e1-386.e9, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36243352

ABSTRACT

OBJECTIVES: To define bacterial aetiology of neonatal sepsis and estimate the prevalence of neonatal infection from maternal genital tract bacterial carriage among mother-newborn pairs. METHODS: We carried out a cross-sectional study of newborns with clinical sepsis admitted to three hospitals in the Gambia neonatal wards. Neonatal blood cultures and maternal genital swabs were obtained at recruitment. We used whole-genome sequencing to explore vertical transmission for neonates with microbiologically confirmed bloodstream infection by comparing phenotypically-matched paired neonatal blood cultures and maternal genital tract bacterial isolates. RESULTS: We enrolled 203 maternal-newborn pairs. Two-thirds (67%; 137/203) of neonates presented with early-onset sepsis (days 0-6 after birth) of which 26% (36/137) were because of a clinically-significant bacterial pathogen. Blood culture isolates from newborns with early-onset sepsis because of Staphylococcus aureus (n = 5), Klebsiella pneumonia (n = 2), and Enterococcus faecalis (n = 1), phenotypically matched their maternal genital tract isolates. Pairwise single-nucleotide variants comparisons showed differences of 12 to 52 single-nucleotide variants only between maternal and newborn S. aureus isolates, presumably representing vertical transmission with a transmission rate of 14% (5/36). CONCLUSIONS: We found a low prevalence of vertical transmission of maternal genital tract colonization in maternal-newborn pairs for early-onset neonatal sepsis in the West African context. Identifying infection acquisition pathways among newborns is essential to prioritize preventive interventions, which could be targeted at the mother or infection control in the hospital environment, depending on the major pathways of transmission.


Subject(s)
Infant, Newborn, Diseases , Neonatal Sepsis , Sepsis , Female , Humans , Infant, Newborn , Gambia , Staphylococcus aureus , Cross-Sectional Studies , Infant, Newborn, Diseases/etiology , Infant, Newborn, Diseases/microbiology , Sepsis/epidemiology , Bacteria , Africa, Western , Infectious Disease Transmission, Vertical/prevention & control , Genomics , Nucleotides
7.
Science ; 378(6623): eadd8737, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36454863

ABSTRACT

The geographic and evolutionary origins of the SARS-CoV-2 Omicron variant (BA.1), which was first detected mid-November 2021 in Southern Africa, remain unknown. We tested 13,097 COVID-19 patients sampled between mid-2021 to early 2022 from 22 African countries for BA.1 by real-time RT-PCR. By November-December 2021, BA.1 had replaced the Delta variant in all African sub-regions following a South-North gradient, with a peak Rt of 4.1. Polymerase chain reaction and near-full genome sequencing data revealed genetically diverse Omicron ancestors already existed across Africa by August 2021. Mutations, altering viral tropism, replication and immune escape, gradually accumulated in the spike gene. Omicron ancestors were therefore present in several African countries months before Omicron dominated transmission. These data also indicate that travel bans are ineffective in the face of undetected and widespread infection.

9.
J Public Health Afr ; 13(3): 1616, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36277952

ABSTRACT

Background: The outbreak of COVID-19 disease and rapid spread of the virus outside China led to its declaration as a Public Health Emergency of International Concern (PHEIC) in January 2020. Key elements of the early intervention strategy focused on laboratory diagnosis and screening at points of entry and imposition of restrictions in crossborder activities. Objective: We report the role the Medical Research Council Unit, The Gambia (MRCG) played in the early implementation of molecular testing for COVID-19 in The Gambia as part of the national outbreak response. Methods: Laboratory staff members, with experience in molecular biology assays, were identified and trained on COVID-19 testing at the Africa CDC training workshop in Dakar, Senegal. Thereafter risks assessments, drafting of standard operating procedures (SOPs) and inhouse training enabled commencement of testing using commercial RTPCR kits. Subsequently, testing was expanded to the National Public Health Laboratroy and also implemented across field sites for rapid response across the country. Results: Capacity for COVID-19 testing at MRCG was developed and can process aproximately 350 tests per day, which can be further scaled up as the demand for testing increases. Conclusion: The long presence of the Unit in The Gambia and strong collaborative relationship with the National Health Ministry, allowed for a synergistc approach in mounting an effective response that contributed in delaying the establishment of community transmission in the country.

11.
Gates Open Res ; 6: 148, 2022.
Article in English | MEDLINE | ID: mdl-36726685

ABSTRACT

Background: In many countries, non-pharmaceutical interventions to limit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission resulted in significant reductions in other respiratory viruses. However, similar data from Africa are limited. We explored the extent to which viruses such as influenza and rhinovirus co-circulated with SARS-CoV-2 in The Gambia during the COVID-19 pandemic.  Methods: Between April 2020 and March 2022, respiratory viruses were detected using RT-PCR in nasopharyngeal swabs from 1397 participants with influenza-like illness. An assay to detect SARS-CoV-2 and a viral multiplex RT-PCR assay was used as previously described  to detect influenza A and B, respiratory syncytial virus (RSV) A and B, parainfluenza viruses 1-4, human metapneumovirus (HMPV), adenovirus, seasonal coronaviruses (229E, OC43, NL63) and human rhinovirus. Results: Overall virus positivity was 44.2%, with prevalence higher in children <5 years (80%) compared to children aged 5-17 years (53.1%), adults aged 18-50 (39.5%) and >50 years (39.9%), p<0.0001. After SARS-CoV-2 (18.3%), rhinoviruses (10.5%) and influenza viruses (5.5%) were the most prevalent. SARS-CoV-2 positivity was lower in children <5 (4.3%) and 5-17 years (12.7%) than in adults aged 18-50 (19.3%) and >50 years (24.3%), p<0.0001. In contrast, rhinoviruses were most prevalent in children <5 years (28.7%), followed by children aged 5-17 (15.8%), adults aged 18-50 (8.3%) and >50 years (6.3%), p<0.0001. Four SARS-CoV-2 waves occurred, with 36.1%-52.4% SARS-CoV-2 positivity during peak months. Influenza infections were observed in both 2020 and 2021 during the rainy season as expected (peak positivity 16.4%-23.5%). Peaks of rhinovirus were asynchronous to the months when SARS-CoV-2 and influenza peaked. Conclusion: Our data show that many respiratory viruses continued to circulate during the COVID-19 pandemic in The Gambia, including human rhinoviruses, despite the presence of NPIs during the early stages of the pandemic, and influenza peaks during expected months.

12.
Lancet Microbe ; 2(12): e656-e665, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34881370

ABSTRACT

BACKGROUND: Influenza and other respiratory viruses promote Streptococcus pneumoniae proliferation in the upper respiratory tract. We sought to investigate for what we believe is the first time, the effect of intranasal live attenuated influenza vaccine (LAIV) on nasopharyngeal S pneumoniae density in a low-income to middle-income country population with high pneumococcal carriage rates. METHODS: In an open-label, randomised, controlled trial in The Gambia, 330 healthy children aged 24-59 months were randomly assigned 2:1 to receive one trivalent LAIV dose at enrolment (day 0, intervention) or at the end of active follow-up (day 21, control). The investigator team were initially masked to block size and randomisation sequence to avoid allocation bias. Group allocation was later revealed to the investigator team. The primary outcome was PCR-quantified day 7 and 21 pneumococcal density. Asymptomatic respiratory viral infection at baseline and LAIV strain shedding were included as covariates in generalised mixed-effects models, to assess the effect of LAIV and other variables on pneumococcal densities. The study is registered at ClinicalTrials.gov, NCT02972957, and is closed to recruitment. FINDINGS: Between Feb 8 and April 12, 2017, and Jan 15 and March 28, 2018, of 343 children assessed for eligibility, 213 in the intervention group and 108 in the control group completed the study and were included in the final analysis. Although no significant differences were seen in pneumococcal carriage or density at each timepoint when comparing groups, changes from baseline were observed in the LAIV group. The baseline S pneumoniae carriage prevalence was high in both LAIV and control groups (75%) and increased by day 21 in the LAIV group (85%, p=0·0037), but not in the control group (79%, p=0·44). An increase in pneumococcal density from day 0 amounts was seen in the LAIV group at day 7 (+0·207 log10 copies per µL, SE 0·105, p=0·050) and day 21 (+0·280 log10 copies per µL, SE 0·105, p=0·0082), but not in the control group. Older age was associated with lower pneumococcal density (-0·015 log10 copies per µL, SE 0·005, p=0·0030), with the presence of asymptomatic respiratory viruses at baseline (+0·259 log10 copies per µL, SE 0·097, p=0·017), and greater LAIV shedding at day 7 (+0·380 log10 copies per µL, SE 0·167, p=0·024) associated with higher pneumococcal density. A significant increase in rhinorrhoea was reported in the LAIV group compared with the control group children during the first 7 days of the study (103 [48%] of 213, compared with 25 [23%] of 108, p<0·0001), and between day 7 and 21 (108 [51%] of 213, compared with 28 [26%] of 108, p<0·0001). INTERPRETATION: LAIV was associated with a modest increase in nasopharyngeal pneumococcal carriage and density in the 21 days following vaccination, with the increase in density lower in magnitude than previously described in the UK. This increase was accelerated when LAIV was administered in the presence of pre-existing asymptomatic respiratory viruses, suggesting that nasopharyngeal S pneumoniae proliferation is driven by cumulative mixed-viral co-infections. The effect of LAIV on pneumococcal density is probably similar to other respiratory viral infections in children. Our findings provide reassurance for the use of LAIV to expand influenza vaccine programmes in low-income to middle-income country populations with high pneumococcal carriage. FUNDING: Wellcome Trust.


Subject(s)
Coinfection , Influenza Vaccines , Influenza, Human , Child , Gambia/epidemiology , Humans , Influenza Vaccines/therapeutic use , Influenza, Human/epidemiology , Pneumococcal Vaccines/therapeutic use , Streptococcus pneumoniae , Vaccines, Attenuated/therapeutic use
13.
EBioMedicine ; 73: 103644, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34695658

ABSTRACT

BACKGROUND: The specific roles that gut microbiota, known pathogens, and host energy-regulating hormones play in the pathogenesis of non-edematous severe acute malnutrition (marasmus SAM) and moderate acute malnutrition (MAM) during outpatient nutritional rehabilitation are yet to be explored. METHODS: We applied an ensemble of sample-specific (intra- and inter-modality) association networks to gain deeper insights into the pathogenesis of acute malnutrition and its severity among children under 5 years of age in rural Gambia, where marasmus SAM is most prevalent. FINDINGS: Children with marasmus SAM have distinct microbiome characteristics and biologically-relevant multimodal biomarkers not observed among children with moderate acute malnutrition. Marasmus SAM was characterized by lower microbial richness and biomass, significant enrichments in Enterobacteriaceae, altered interactions between specific Enterobacteriaceae and key energy regulating hormones and their receptors. INTERPRETATION: Our findings suggest that marasmus SAM is characterized by the collapse of a complex system with nested interactions and key associations between the gut microbiome, enteric pathogens, and energy regulating hormones.  Further exploration of these systems will help inform innovative preventive and therapeutic interventions. FUNDING: The work was supported by the UK Medical Research Council (MRC; MC-A760-5QX00) and the UK Department for International Development (DFID) under the MRC/DFID Concordat agreement; Bill and Melinda Gates Foundation (OPP 1066932) and the National Institute of Medical Research (NIMR), UK. This network analysis was supported by NIH U54GH009824 [CLD] and NSF OCE-1558453 [CLD].


Subject(s)
Energy Metabolism , Gastrointestinal Microbiome , Hormones/metabolism , Host-Pathogen Interactions , Severe Acute Malnutrition/etiology , Severe Acute Malnutrition/metabolism , Biodiversity , Cross-Sectional Studies , Disease Susceptibility , Enterobacteriaceae/pathogenicity , Feces/microbiology , Gambia/epidemiology , Humans , Metagenome , Metagenomics/methods , Phenotype , Rural Population , Severe Acute Malnutrition/diagnosis , Severe Acute Malnutrition/epidemiology , Virulence Factors
14.
Lancet Infect Dis ; 21(9): 1293-1302, 2021 09.
Article in English | MEDLINE | ID: mdl-34280357

ABSTRACT

BACKGROUND: The Gambia introduced seven-valent pneumococcal conjugate vaccine (PCV7) in August 2009, followed by PCV13 in May, 2011, using a schedule of three primary doses without a booster dose or catch-up immunisation. We aimed to assess the long-term impact of PCV on disease incidence. METHODS: We did 10 years of population-based surveillance for invasive pneumococcal disease (IPD) and WHO defined radiological pneumonia with consolidation in rural Gambia. The surveillance population included all Basse Health and Demographic Surveillance System residents aged 2 months or older. Nurses screened all outpatients and inpatients at all health facilities using standardised criteria for referral. Clinicians then applied criteria for patient investigation. We defined IPD as a compatible illness with isolation of Streptococcus pneumoniae from a normally sterile site (cerebrospinal fluid, blood, or pleural fluid). We compared disease incidence between baseline (May 12, 2008-May 11, 2010) and post-vaccine years (2016-2017), in children aged 2 months to 14 years, adjusting for changes in case ascertainment over time. FINDINGS: We identified 22 728 patients for investigation and detected 342 cases of IPD and 2623 cases of radiological pneumonia. Among children aged 2-59 months, IPD incidence declined from 184 cases per 100 000 person-years to 38 cases per 100 000 person-years, an 80% reduction (95% CI 69-87). Non-pneumococcal bacteraemia incidence did not change significantly over time (incidence rate ratio 0·88; 95% CI, 0·64-1·21). We detected zero cases of vaccine-type IPD in the 2-11 month age group in 2016-17. Incidence of radiological pneumonia decreased by 33% (95% CI 24-40), from 10·5 to 7·0 per 1000 person-years in the 2-59 month age group, while pneumonia hospitalisations declined by 27% (95% CI 22-31). In the 5-14 year age group, IPD incidence declined by 69% (95% CI -28 to 91) and radiological pneumonia by 27% (95% CI -5 to 49). INTERPRETATION: Routine introduction of PCV13 substantially reduced the incidence of childhood IPD and pneumonia in rural Gambia, including elimination of vaccine-type IPD in infants. Other low-income countries can expect substantial impact from the introduction of PCV13 using a schedule of three primary doses. FUNDING: Gavi, The Vaccine Alliance; Bill & Melinda Gates Foundation; UK Medical Research Council; Pfizer Ltd.


Subject(s)
Pneumococcal Infections/psychology , Pneumococcal Vaccines/immunology , Pneumonia/prevention & control , Streptococcus pneumoniae/immunology , Vaccination , Vaccines, Conjugate/immunology , Adolescent , Child , Child, Preschool , Female , Gambia , Humans , Immunization , Incidence , Infant , Male , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines/administration & dosage , Population Surveillance
15.
Emerg Infect Dis ; 27(8): 2064-2072, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34286683

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is evolving differently in Africa than in other regions. Africa has lower SARS-CoV-2 transmission rates and milder clinical manifestations. Detailed SARS-CoV-2 epidemiologic data are needed in Africa. We used publicly available data to calculate SARS-CoV-2 infections per 1,000 persons in The Gambia. We evaluated transmission rates among 1,366 employees of the Medical Research Council Unit The Gambia (MRCG), where systematic surveillance of symptomatic cases and contact tracing were implemented. By September 30, 2020, The Gambia had identified 3,579 SARS-CoV-2 cases, including 115 deaths; 67% of cases were identified in August. Among infections, MRCG staff accounted for 191 cases; all were asymptomatic or mild. The cumulative incidence rate among nonclinical MRCG staff was 124 infections/1,000 persons, which is >80-fold higher than estimates of diagnosed cases among the population. Systematic surveillance and seroepidemiologic surveys are needed to clarify the extent of SARS-CoV-2 transmission in Africa.


Subject(s)
COVID-19 , Africa , Gambia/epidemiology , Humans , Pandemics , SARS-CoV-2 , Seroepidemiologic Studies
16.
Microb Genom ; 7(7)2021 07.
Article in English | MEDLINE | ID: mdl-34328412

ABSTRACT

Despite contributing to the large disease burden in West Africa, little is known about the genomic epidemiology of Streptococcus pneumoniae which cause meningitis among children under 5 years old in the region. We analysed whole-genome sequencing data from 185 S. pneumoniae isolates recovered from suspected paediatric meningitis cases as part of the World Health Organization (WHO) invasive bacterial diseases surveillance from 2010 to 2016. The phylogeny was reconstructed, accessory genome similarity was computed and antimicrobial-resistance patterns were inferred from the genome data and compared to phenotypic resistance from disc diffusion. We studied the changes in the distribution of serotypes pre- and post-pneumococcal conjugate vaccine (PCV) introduction in the Central and Western sub-regions separately. The overall distribution of non-vaccine, PCV7 (4, 6B, 9V, 14, 18C, 19F and 23F) and additional PCV13 serotypes (1, 3, 5, 6A, 19A and 7F) did not change significantly before and after PCV introduction in the Central region (Fisher's test P value 0.27) despite an increase in the proportion of non-vaccine serotypes to 40 % (n=6) in the post-PCV introduction period compared to 21.9 % (n=14). In the Western sub-region, PCV13 serotypes were more dominant among isolates from The Gambia following the introduction of PCV7, 81 % (n=17), compared to the pre-PCV period in neighbouring Senegal, 51 % (n=27). The phylogeny illustrated the diversity of strains associated with paediatric meningitis in West Africa and highlighted the existence of phylogeographical clustering, with isolates from the same sub-region clustering and sharing similar accessory genome content. Antibiotic-resistance genotypes known to confer resistance to penicillin, chloramphenicol, co-trimoxazole and tetracycline were detected across all sub-regions. However, there was no discernible trend linking the presence of resistance genotypes with the vaccine introduction period or whether the strain was a vaccine or non-vaccine serotype. Resistance genotypes appeared to be conserved within selected sub-clades of the phylogenetic tree, suggesting clonal inheritance. Our data underscore the need for continued surveillance on the emergence of non-vaccine serotypes as well as chloramphenicol and penicillin resistance, as these antibiotics are likely still being used for empirical treatment in low-resource settings. This article contains data hosted by Microreact.


Subject(s)
Drug Resistance, Multiple, Bacterial/genetics , Heptavalent Pneumococcal Conjugate Vaccine/immunology , Meningitis, Pneumococcal/epidemiology , Pneumococcal Vaccines/immunology , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/genetics , Adolescent , Africa, Western/epidemiology , Antitubercular Agents/pharmacology , Child , Child, Preschool , Genome, Bacterial/genetics , Humans , Infant , Infant, Newborn , Meningitis, Pneumococcal/immunology , Meningitis, Pneumococcal/prevention & control , Microbial Sensitivity Tests , Streptococcus pneumoniae/immunology , Streptococcus pneumoniae/isolation & purification , Whole Genome Sequencing
17.
Sensors (Basel) ; 21(10)2021 May 16.
Article in English | MEDLINE | ID: mdl-34065700

ABSTRACT

We present SpeakingFaces as a publicly-available large-scale multimodal dataset developed to support machine learning research in contexts that utilize a combination of thermal, visual, and audio data streams; examples include human-computer interaction, biometric authentication, recognition systems, domain transfer, and speech recognition. SpeakingFaces is comprised of aligned high-resolution thermal and visual spectra image streams of fully-framed faces synchronized with audio recordings of each subject speaking approximately 100 imperative phrases. Data were collected from 142 subjects, yielding over 13,000 instances of synchronized data (∼3.8 TB). For technical validation, we demonstrate two baseline examples. The first baseline shows classification by gender, utilizing different combinations of the three data streams in both clean and noisy environments. The second example consists of thermal-to-visual facial image translation, as an instance of domain transfer.

19.
PeerJ ; 9: e10941, 2021.
Article in English | MEDLINE | ID: mdl-33868800

ABSTRACT

BACKGROUND: The chicken is the most abundant food animal in the world. However, despite its importance, the chicken gut microbiome remains largely undefined. Here, we exploit culture-independent and culture-dependent approaches to reveal extensive taxonomic diversity within this complex microbial community. RESULTS: We performed metagenomic sequencing of fifty chicken faecal samples from two breeds and analysed these, alongside all (n = 582) relevant publicly available chicken metagenomes, to cluster over 20 million non-redundant genes and to construct over 5,500 metagenome-assembled bacterial genomes. In addition, we recovered nearly 600 bacteriophage genomes. This represents the most comprehensive view of taxonomic diversity within the chicken gut microbiome to date, encompassing hundreds of novel candidate bacterial genera and species. To provide a stable, clear and memorable nomenclature for novel species, we devised a scalable combinatorial system for the creation of hundreds of well-formed Latin binomials. We cultured and genome-sequenced bacterial isolates from chicken faeces, documenting over forty novel species, together with three species from the genus Escherichia, including the newly named species Escherichia whittamii. CONCLUSIONS: Our metagenomic and culture-based analyses provide new insights into the bacterial, archaeal and bacteriophage components of the chicken gut microbiome. The resulting datasets expand the known diversity of the chicken gut microbiome and provide a key resource for future high-resolution taxonomic and functional studies on the chicken gut microbiome.

20.
Cell Rep Med ; 2(12): 100465, 2021 12 21.
Article in English | MEDLINE | ID: mdl-35028607

ABSTRACT

In children lacking influenza-specific adaptive immunity, upper respiratory tract innate immune responses may influence viral replication and disease outcome. We use trivalent live attenuated influenza vaccine (LAIV) as a surrogate challenge model in children aged 24-59 months to identify pre-infection mucosal transcriptomic signatures associated with subsequent viral shedding. Upregulation of interferon signaling pathways prior to LAIV is significantly associated with lower strain-specific viral loads (VLs) at days 2 and 7. Several interferon-stimulated genes are differentially expressed in children with pre-LAIV asymptomatic respiratory viral infections and negatively correlated with LAIV VLs. Upregulation of genes enriched in macrophages, neutrophils, and eosinophils is associated with lower VLs and found more commonly in children with asymptomatic viral infections. Variability in pre-infection mucosal interferon gene expression in children may impact the course of subsequent influenza infections. This variability may be due to frequent respiratory viral infections, demonstrating the potential importance of mucosal virus-virus interactions in children.


Subject(s)
Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/virology , Interferons/metabolism , Nasopharynx/virology , Vaccines, Attenuated/immunology , Virus Shedding/immunology , Child , Child, Preschool , Female , Gene Expression Profiling , Humans , Influenza, Human/genetics , Male , Transcription, Genetic , Up-Regulation , Vaccination , Viral Load , Virus Shedding/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...