Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Chemistry ; 29(34): e202300617, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37013945

ABSTRACT

The synthesis of a new heterodinuclear ReI RuII metallointercalator containing RuII (dppz) and ReI (dppn) moieties is reported. Cell-free studies reveal that the complex has similar photophysical properties to its homoleptic M(dppz) analogue and it also binds to DNA with a similar affinity. However, the newly reported complex has very different in-cell properties to its parent. In complete contrast to the homoleptic system, the RuII (dppz)/ReI (dppn) complex is not intrinsically cytotoxic but displays appreciable phototoxic, despite both complexes displaying very similar quantum yields for singlet oxygen sensitization. Optical microscopy suggests that the reason for these contrasting biological effects is that whereas the homoleptic complex localises in the nuclei of cells, the RuII (dppz)/ReI (dppn) complex preferentially accumulates in mitochondria. These observations illustrate how even small structural changes in metal based therapeutic leads can modulate their mechanism of action.


Subject(s)
Organometallic Compounds , Ruthenium , Luminescence , Phototherapy , Metals , DNA/chemistry , Singlet Oxygen/chemistry , Ruthenium/chemistry , Organometallic Compounds/chemistry
2.
Angew Chem Int Ed Engl ; 61(27): e202117449, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35416386

ABSTRACT

The dinuclear RuII complex [(Ru(phen)2 )2 (tpphz)]4+ (phen=1,10-phenanthroline, tpphz=tetrapyridophenazine) "RuRuPhen" blocks the transformation of G-actin monomers to F-actin filaments with no disassembly of pre-formed F-actin. Molecular docking studies indicate multiple RuRuPhen molecules bind to the surface of G-actin but not the binding pockets of established actin polymerisation inhibitors. In cells, addition of RuRuPhen causes rapid disruption to actin stress fibre organisation, compromising actomyosin contractility and cell motility; due to this effect RuRuPhen interferes with late-stage cytokinesis. Immunofluorescent microscopy reveals that RuRuPhen causes cytokinetic abscission failure by interfering with endosomal sorting complexes required for transport (ESCRT) complex recruitment.


Subject(s)
Cytokinesis , Ruthenium , Actin Cytoskeleton , Actins/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Molecular Docking Simulation , Ruthenium/metabolism , Ruthenium/pharmacology
3.
Angew Chem Weinheim Bergstr Ger ; 134(27): e202117449, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-38505667

ABSTRACT

The dinuclear RuII complex [(Ru(phen)2)2(tpphz)]4+ (phen=1,10-phenanthroline, tpphz=tetrapyridophenazine) "RuRuPhen" blocks the transformation of G-actin monomers to F-actin filaments with no disassembly of pre-formed F-actin. Molecular docking studies indicate multiple RuRuPhen molecules bind to the surface of G-actin but not the binding pockets of established actin polymerisation inhibitors. In cells, addition of RuRuPhen causes rapid disruption to actin stress fibre organisation, compromising actomyosin contractility and cell motility; due to this effect RuRuPhen interferes with late-stage cytokinesis. Immunofluorescent microscopy reveals that RuRuPhen causes cytokinetic abscission failure by interfering with endosomal sorting complexes required for transport (ESCRT) complex recruitment.

4.
J Am Chem Soc ; 142(2): 1101-1111, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31846306

ABSTRACT

The synthesis of new dinuclear complexes containing linked RuII(dppz) and ReI(dppz) moieties is reported. The photophysical and biological properties of the new complex, which incorporates a N,N'-bis(4-pyridylmethyl)-1,6-hexanediamine tether ligand, are compared to a previously reported RuII/ReI complex linked by a simple dipyridyl alkane ligand. Although both complexes bind to DNA with similar affinities, steady-state and time-resolved photophysical studies reveal that the nature of the linker affects the excited state dynamics of the complexes and their DNA photocleavage properties. Quantum-based DFT calculations on these systems offer insights into these effects. While both complexes are live cells permeant, their intracellular localizations are significantly affected by the nature of the linker. Notably, one of the complexes displayed concentration-dependent localization and possesses photophysical properties that are compatible with SIM and STED nanoscopy. This allowed the dynamics of its intracellular localization to be tracked at super resolutions.


Subject(s)
Coordination Complexes/chemistry , Precision Medicine , Rhenium/chemistry , Ruthenium Compounds/chemistry , Cell Line , Humans , Ligands , Molecular Structure , Spectrophotometry, Ultraviolet
5.
ACS Nano ; 13(5): 5133-5146, 2019 05 28.
Article in English | MEDLINE | ID: mdl-30964642

ABSTRACT

Medicinal leads that are also compatible with imaging technologies are attractive, as they facilitate the development of therapeutics through direct mechanistic observations at the molecular level. In this context, the uptake and antimicrobial activities of several luminescent dinuclear RuII complexes against E. coli were assessed and compared to results obtained for another ESKAPE pathogen, the Gram-positive major opportunistic pathogen Enterococcus faecalis, V583. The most promising lead displays potent activity, particularly against the Gram-negative bacteria, and potency is retained in the uropathogenic multidrug resistant EC958 ST131 strain. Exploiting the inherent luminescent properties of this complex, super-resolution STED nanoscopy was used to image its initial localization at/in cellular membranes and its subsequent transfer to the cell poles. Membrane damage assays confirm that the complex disrupts the bacterial membrane structure before internalization. Mammalian cell culture and animal model studies indicate that the complex is not toxic to eukaryotes, even at concentrations that are several orders of magnitude higher than its minimum inhibitory concentration (MIC). Taken together, these results have identified a lead molecular architecture for hard-to-treat, multiresistant, Gram-negative bacteria, which displays activities that are already comparable to optimized natural product-based leads.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Gram-Negative Bacteria/drug effects , Nanotechnology/methods , Adenosine Triphosphate/metabolism , Animals , Anti-Bacterial Agents/toxicity , Gram-Negative Bacteria/ultrastructure , Microbial Sensitivity Tests , Microbial Viability/drug effects , Moths/drug effects , Ruthenium/chemistry , Ruthenium/pharmacology
6.
J Am Chem Soc ; 141(7): 2925-2937, 2019 02 20.
Article in English | MEDLINE | ID: mdl-30595016

ABSTRACT

Drug resistance to platinum chemotherapeutics targeting DNA often involves abrogation of apoptosis and has emerged as a significant challenge in modern, non-targeted chemotherapy. Consequently, there is great interest in the anti-cancer properties of metal complexes-particularly those that interact with DNA-and mechanisms of consequent cell death. Herein we compare a parent cytotoxic complex, [Ru(phen)2(tpphz)]2+ [phen = 1,10-phenanthroline, tpphz = tetrapyridyl[3,2- a:2',3'- c:3″,2″- h:2‴,3‴- j]phenazine], with a mononuclear analogue with a modified intercalating ligand, [Ru(phen)2(taptp)]2+ [taptp = 4,5,9,18-tetraazaphenanthreno[9,10- b] triphenylene], and two structurally related dinuclear, tpphz-bridged, heterometallic complexes, RuRe and RuPt. All three of these structural changes result in a switch from intercalation to groove-binding DNA interaction and concomitant reduction in cytotoxic potency, but no significant change in relative cytotoxicity toward platinum-resistant A2780CIS cancer cells, indicating that the DNA interaction mode is not critical for the mechanism of platinum resistance. All variants exhibited a light-switch effect, which for the first time was exploited to investigate timing of cell death by live-cell microscopy. Surprisingly, cell death occurred rapidly as a consequence of oncosis, characterized by loss of cytoplasmic volume control, absence of significant mitochondrial membrane potential loss, and lack of activation of apoptotic cell death markers. Importantly, a novel, quantitative proteomic analysis of the A2780 cell genome following exposure of the cells to either mononuclear complex reveals changes in protein expression associated with global cell responses to oxidative stress and DNA replication/repair cellular pathways. This combination of multiple targeting modalities and induction of a non-apoptotic death mechanism makes these complexes highly promising chemotherapeutic cytotoxicity leads.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , DNA/drug effects , Intercalating Agents/pharmacology , Proteome/drug effects , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/radiation effects , Cattle , Cell Death/drug effects , Cell Line, Tumor , Cisplatin/pharmacology , Coordination Complexes/chemical synthesis , Coordination Complexes/radiation effects , DNA Damage/drug effects , Humans , Intercalating Agents/chemical synthesis , Intercalating Agents/radiation effects , Light , Oxidative Stress/drug effects , Proteomics , Ruthenium/chemistry
7.
Nanoscale ; 10(22): 10596-10608, 2018 Jun 07.
Article in English | MEDLINE | ID: mdl-29808844

ABSTRACT

Radiolabelled, drug-loaded nanoparticles may combine the theranostic properties of radionuclides, the controlled release of chemotherapy and cancer cell targeting. Here, we report the preparation of poly(lactic-co-glycolic acid) (PLGA) nanoparticles surface conjugated to DTPA-hEGF (DTPA = diethylenetriaminepentaacetic acid, hEGF = human epidermal growth factor) and encapsulating the ruthenium-based DNA replication inhibitor and radiosensitizer Ru(phen)2(tpphz)2+ (phen = 1,10-phenanthroline, tpphz = tetrapyridophenazine) Ru1. The functionalized PLGA surface incorporates the metal ion chelator DTPA for radiolabelling and the targeting ligand for EGF receptor (EGFR). Nanoparticles radiolabelled with 111In are taken up preferentially by EGFR-overexpressing oesophageal cancer cells, where they exhibit radiotoxicity through the generation of cellular DNA damage. Moreover, nanoparticle co-delivery of Ru1 alongside 111In results in decreased cell survival compared to single-agent formulations; an effect that occurs through DNA damage enhancement and an additive relationship between 111In and Ru1. Substantially decreased uptake and radiotoxicity of nanoparticles towards normal human fibroblasts and oesophageal cancer cells with normal EGFR levels is observed. This work demonstrates nanoparticle co-delivery of a therapeutic radionuclide plus a ruthenium-based radiosensitizer can achieve combinational and targeted therapeutic effects in cancer cells that overexpress EGFR.


Subject(s)
Esophageal Neoplasms/therapy , Indium Radioisotopes , Nanoparticles/chemistry , Radiation-Sensitizing Agents/pharmacology , Ruthenium/pharmacology , Adenocarcinoma , Animals , Carcinoma, Squamous Cell , Cell Line, Tumor , ErbB Receptors/metabolism , Female , Humans , Mice , Mice, Inbred BALB C , Polyglycolic Acid , Polylactic Acid-Polyglycolic Acid Copolymer
8.
Chem Sci ; 9(4): 841-849, 2018 Jan 28.
Article in English | MEDLINE | ID: mdl-29629151

ABSTRACT

Substitutionally inert ruthenium(ii) polypyridyl complexes have been developed as DNA intercalating agents yet cellular DNA damage responses to this binding modality are largely unexplored. Here, we show the nuclear-targeting complex [Ru(phen)2(tpphz)]2+ (phen = 1,10-phenanthroline, tpphz = tetrapyridophenazine) generates rapid and pronounced stalling of replication fork progression in p53-deficient human oesophageal cancer cells. In response, replication stress and double-strand break (DSB) DNA damage response (DDR) pathways are activated and cell proliferation is inhibited by growth arrest. Moreover, mitotic progression is compromised by [Ru(phen)2(tpphz)]2+, where the generation of metaphase chromosome spindle attachment failure results in spindle assembly checkpoint (SAC) activation. This dual mechanism of action results in preferential growth inhibition of rapidly-proliferating oesophageal cancer cells with elevated mitotic indices. In addition to these single-agent effects, [Ru(phen)2(tpphz)]2+ functions as a radiosensitizer with efficiency comparable to cisplatin, which occurs through a synergistic enhancement of DNA damage. These results establish that DNA replication is the target for [Ru(phen)2(tpphz)]2+ and provide the first experimental evidence that ruthenium-based intercalation targets multiple genome integrity pathways in cancer cells, thereby achieving enhanced selectivity compared to existing DNA-damaging agents such as cisplatin.

9.
Dalton Trans ; 47(14): 4931-4940, 2018 Apr 03.
Article in English | MEDLINE | ID: mdl-29552680

ABSTRACT

Two new biscyclometalated complexes [Ir(ptzR)2(dppz)]+ (dppz = dipyridophenazene; ptzRH = 4-phenyl-1-benzyl-1,2,3-triazole (1+) and 4-phenyl-1-propyl-1,2,3-triazole (2+)) have been prepared. The hexafluorophosphate salts of these complexes have been fully characterized and, in one case, the X-ray structure of a nitrate salt was obtained. The DNA binding properties of the chloride salts of the complexes were investigated, as well as their cellular uptake by A2780 and MCF7 cell lines. Both complexes display an increase in the intensity of phosphorescence upon titration with duplex DNA, indicating the intercalation of the dppz ligand and, given that they are monocations, the complexes exhibit appreciable DNA binding affinity. Optical microscopy studies reveal that both complexes are taken up by live cancer cell lines displaying cytosol based luminescence. Colocalization studies with commercial probes show high Pearson coefficients with mitotracker dyes confirming that the new complexes specifically localize on mitochondria.

10.
Angew Chem Int Ed Engl ; 56(41): 12628-12633, 2017 10 02.
Article in English | MEDLINE | ID: mdl-28834038

ABSTRACT

Using a new mononuclear "building block," for the first time, a dinuclear RuII (dppn) complex and a heteroleptic system containing both RuII (dppz) and RuII (dppn) moieties are reported. The complexes, including the mixed dppz/dppn system, are 1 O2 sensitizers. However, unlike the homoleptic dppn systems, the mixed dppz/dppn complex also displays a luminescence "switch on" DNA light-switch effect. In both cisplatin sensitive and resistant human ovarian carcinoma lines the dinuclear complexes show enhanced uptake compared to their mononuclear analogue. Thanks to a favorable combination of singlet oxygen generation and cellular uptake properties all three of the new complexes are phototoxic and display potent activity against chemotherapeutically resistant cells.


Subject(s)
Coordination Complexes/pharmacology , Intercalating Agents/pharmacology , Ovarian Neoplasms/drug therapy , Photosensitizing Agents/pharmacology , Ruthenium/pharmacology , Cell Line, Tumor , Coordination Complexes/chemistry , Coordination Complexes/pharmacokinetics , DNA/metabolism , Female , Humans , Intercalating Agents/chemistry , Intercalating Agents/pharmacokinetics , Ovarian Neoplasms/metabolism , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacokinetics , Ruthenium/chemistry , Ruthenium/pharmacokinetics , Singlet Oxygen/metabolism
11.
Chemistry ; 22(17): 5996-6000, 2016 Apr 18.
Article in English | MEDLINE | ID: mdl-27000412

ABSTRACT

Although metal-ion-directed self-assembly has been widely used to construct a vast number of macrocycles and cages, it is only recently that the biological properties of these systems have begun to be explored. However, up until now, none of these studies have involved intrinsically photoexcitable self-assembled structures. Herein we report the first metallomacrocycle that functions as an intracellular singlet oxygen sensitizer. Not only does this Ru2 Re2 system possess potent photocytotoxicity at light fluences below those used for current medically employed systems, it offers an entirely new paradigm for the construction of sensitizers for photodynamic therapy.


Subject(s)
Organometallic Compounds/chemistry , Photosensitizing Agents/chemistry , Singlet Oxygen/chemistry , Photochemistry
12.
Chemistry ; 21(25): 9185-97, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25950156

ABSTRACT

Cytostatic agents that interfere with specific cellular components to prevent cancer cell growth offer an attractive alternative, or complement, to traditional cytotoxic chemotherapy. Here, we describe the synthesis and characterization of a new binuclear Ru(II) -Pt(II) complex [Ru(tpy)(tpypma)Pt(Cl)(DMSO)](3+) (tpy=2,2':6',2''-terpyridine and tpypma=4-([2,2':6',2''-terpyridine]-4'-yl)-N-(pyridin-2-ylmethyl)aniline), VR54, which employs the extended terpyridine tpypma ligand to link the two metal centres. In cell-free conditions, VR54 binds DNA by non-intercalative reversible mechanisms (Kb =1.3×10(5) M(-1) ) and does not irreversibly bind guanosine. Cellular studies reveal that VR54 suppresses proliferation of A2780 ovarian cancer cells with no cross-resistance in the A2780CIS cisplatin-resistant cell line. Through the preparation of mononuclear Ru(II) and Pt(II) structural derivatives it was determined that both metal centres are required for this anti-proliferative activity. In stark contrast to cisplatin, VR54 neither activates the DNA-damage response network nor induces significant levels of cell death. Instead, VR54 is cytostatic and inhibits cell proliferation by up-regulating the cyclin-dependent kinase inhibitor p27(KIP1) and inhibiting retinoblastoma protein phosphorylation, which blocks entry into S phase and results in G1 cell cycle arrest. Thus, VR54 inhibits cancer cell growth by a gain of function at the G1 restriction point. This is the first metal-coordination compound to demonstrate such activity.


Subject(s)
Antineoplastic Agents/chemistry , Breast Neoplasms/chemistry , Cisplatin/chemistry , Coordination Complexes/chemical synthesis , Cytostatic Agents/chemistry , Cytostatic Agents/chemical synthesis , DNA/chemistry , Platinum/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Breast Neoplasms/pathology , Cell Line , Cisplatin/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Cytostatic Agents/pharmacology , Female , Humans , Ligands , Magnetic Resonance Spectroscopy , Platinum/pharmacology , Ruthenium/chemistry , Ruthenium/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...