Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Genet Metab Rep ; 25: 100676, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33240792

ABSTRACT

BACKGROUND: The gangliosidoses are rare inherited diseases that result in pathologic accumulation of gangliosides in the central nervous system and other tissues, leading to severe and progressive neurological impairment and early death in the childhood forms. No treatments are currently approved for the gangliosidoses, and development of treatments is impaired by limited understanding of the natural history of these diseases. OBJECTIVE: The objective of this study is to improve understanding of the juvenile gangliosidoses phenotypes and the late-infantile phenotypic subtype. METHODS: Through a prospective natural history study of subjects with juvenile GM1- and GM2-gangliosidosis, a timeline of clinical changes was developed for the classic juvenile phenotypes and the late-infantile phenotypes and results of serial neurodevelopmental testing was analyzed. RESULTS: Several candidate 'outcome measures' were identified: changes in ambulation and verbalization skills, the communication domain from neurodevelopmental testing and the caregiver-reported socialization domain. CONCLUSIONS: The most common symptoms leading caregivers to seek a genetic diagnosis were changes in ambulation and verbalization.

2.
Mol Genet Metab Rep ; 20: 100495, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31367523

ABSTRACT

Gangliosidoses, including GM1-gangliosidosis and GM2-gangliosidosis (Tay-Sachs disease and Sandhoff disease), are lysosomal disorders resulting from enzyme deficiencies and accumulation of gangliosides. Phenotypes of gangliosidoses range from infantile, late-infantile, juvenile, and to the adult form. The genotype-phenotype correlation is essential for prognosis and clinical care planning for patients with a gangliosidosis condition. Previously, we have developed a method to establish the genotype-phenotype correlation of another lysosomal disease, mucopolysaccharidosis type I, with in silico tools. This same method was applied to analyze the genotype and phenotype of 38 patients diagnosed with a gangliosidosis disease in the United States. Out of 40 mutations identified, 3 were novel, including p.Tyr192His and p.Phe556Ser of the GLB1 gene and p.Gly461Val of the HEXA gene. Furthermore, the mutant protein structure of all missense mutations was constructed by homology modeling. A systemic structural analysis of these models revealed the specific mechanisms of how each mutation may lead to the disease. In summary, the method developed in this study holds promise as a tool that can be broadly applicable to other lysosomal diseases and monogenic diseases.

3.
Mol Genet Metab ; 123(2): 97-104, 2018 02.
Article in English | MEDLINE | ID: mdl-29352662

ABSTRACT

BACKGROUND: GM1-gangliosidosis and GM2-gangliosidosis (Tay-Sachs disease and Sandhoff disease) are unrelenting heritable neurodegenerative conditions of lysosomal ganglioside accumulation. Although progressive brain atrophy is characteristic, longitudinal quantification of specific brain structures has not been systematically studied. OBJECTIVES: The goal of this longitudinal study has been to quantify and track brain MRI volume changes, including specific structure volume changes, at different times in disease progression of childhood gangliosidoses, and to explore quantitative brain MRI volumetry (qMRI) as a non-invasive marker of disease progression for future treatment trials. METHODS: Brain qMRI studies were performed in 14 patients with gangliosidoses (9 infantile, 5 juvenile) yearly. Cerebellar cortex and white matter, caudate, putamen, corpus callosum, ventricles, total brain, and intracranial volumes were measured, as well as total brain volume. Age-matched controls were available for the patients with the juvenile phenotype. RESULTS: The infantile phenotype of all gangliosidoses showed a consistent pattern of macrocephaly and rapidly increasing intracranial MRI volume with both (a) brain tissue volume (cerebral cortex and other smaller structures) and (b) ventricular volume (P<0.01 for all). In contrast to apparent enlargement of the total brain volume, and chiefly the enlarged cerebral cortex, a subset of smaller brain substructures generally decreased in size: the corpus callosum, caudate and putamen became smaller with time. The volume of cerebellar cortex also decreased in patients with infantile GM1-gangliosidosis and juvenile GM1- and GM2-gangliosidosis; however, infantile GM2-gangliosidosis cerebellar cortex was the exception, increasing in size. Elevated intracranial pressure (estimated by lumbar spinal pressure) was a common finding in infantile disease and showed continued increases as the disease progressed, yet lacked MRI signs of hydrocephalus except for increasing ventricular size. Notably, in patients with juvenile gangliosidosis, macrocephaly and elevated intracranial pressure were absent and total brain volume decreased with time compared to controls (P=0.004). CONCLUSIONS: The disease course of infantile versus juvenile gangliosidoses is clearly distinguished by the rate of brain disease progression as characterized by qMRI. Assessments by qMRI represent a robust non-invasive method for monitoring CNS changes in the clinical course of gangliosidoses and is ideally suited to monitor effects of novel CNS-directed therapies in future clinical trials.


Subject(s)
Gangliosidoses, GM2/pathology , Gangliosidosis, GM1/pathology , Magnetic Resonance Imaging/methods , Child , Child, Preschool , Disease Progression , Female , Gangliosides/metabolism , Gangliosidoses, GM2/diagnostic imaging , Gangliosidosis, GM1/diagnostic imaging , Humans , Infant , Longitudinal Studies , Male
4.
Mol Genet Metab ; 122(1-2): 92-99, 2017 09.
Article in English | MEDLINE | ID: mdl-28610913

ABSTRACT

INTRODUCTION: Antibodies to intravenous idursulfase enzyme replacement therapy (ERT) for patients with Hunter syndrome (mucopolysaccharidosis type II, MPS II) can have a harmful clinical impact, including both increasing risk of infusion reactions and inhibiting therapeutic activity. Thus, failure to monitor anti-idursulfase antibodies and neutralizing antibodies, and delays in reporting results, may postpone critical clinical decisions. HYPOTHESIS: Urinary glycosaminoglycan (GAG) levels may be used as a biomarker for anti-idursulfase antibodies and neutralizing antibodies to improve timeliness in monitoring and managing ERT. METHODS: This is a case report describing a patient with MPS II with high levels of neutralizing antibodies and worsened clinical status who was treated for five years with a non-immunosuppressive and non-cytotoxic immune tolerance (NICIT) regimen, consisting of intravenous immune globulin and frequent infusions of idursulfase. Neutralizing antibodies and total anti-idursulfase antibodies were measured by two different methods, the direct 1,9-dimethylmethylene blue (DMB) assay and cetylpyridinium chloride carbazole-borate (CPC) assay. RESULTS: Neutralizing antibodies, measured as percent inhibition of enzyme activity and also by total neutralizing antibody titer, were correlated with quantitative urinary GAG measured by DMB assay (p=0.026, p=0.0067), and quantitative urinary GAG by CPC assay with percent inhibition of enzyme activity by neutralizing antibodies (p=0.0475). The NICIT regimen showed a sustained immune tolerance after five years and was well-tolerated. CONCLUSIONS: Urinary GAG, measured by DMB assay, may be a biomarker for anti-idursulfase neutralizing antibodies and is useful for managing immune tolerance regimens for patients with MPS II who have high levels of anti-idursulfase neutralizing antibodies. This study highlights the importance of regular and frequent monitoring of urinary GAG in patients with MPS II who are receiving ERT. The NICIT regimen, with less drug toxicities, may be preferred in patients with MPS who have a high risk of infections and whose disease progresses less rapidly than some other lysosomal storage diseases, such as infantile Pompe disease.


Subject(s)
Antibodies, Neutralizing/blood , Enzyme Replacement Therapy , Glycosaminoglycans/urine , Iduronate Sulfatase/immunology , Mucopolysaccharidosis II/immunology , Administration, Intravenous/adverse effects , Antibodies, Neutralizing/biosynthesis , Antibodies, Neutralizing/immunology , Biomarkers/urine , Clinical Protocols , Enzyme Replacement Therapy/adverse effects , Humans , Iduronate Sulfatase/administration & dosage , Iduronate Sulfatase/metabolism , Immune Tolerance , Immunoglobulins, Intravenous , Infant , Male , Mucopolysaccharidosis II/drug therapy , Treatment Outcome
5.
Mol Genet Metab ; 121(2): 170-179, 2017 06.
Article in English | MEDLINE | ID: mdl-28476546

ABSTRACT

BACKGROUND: Infantile gangliosidoses include GM1 gangliosidosis and GM2 gangliosidosis (Tay-Sachs disease, Sandhoff disease). To date, natural history studies in infantile GM2 (iGM2) have been retrospective and conducted through surveys. Compared to iGM2, there is even less natural history information available on infantile GM1 disease (iGM1). There are no approved treatments for infantile gangliosidoses. Substrate reduction therapy using miglustat has been tried, but is limited by gastrointestinal side effects. Development of effective treatments will require identification of meaningful outcomes in the setting of rapidly progressive and fatal diseases. OBJECTIVES: This study aimed to establish a timeline of clinical changes occurring in infantile gangliosidoses, prospectively, to: 1) characterize the natural history of these diseases; 2) improve planning of clinical care; and 3) identify meaningful future treatment outcome measures. METHODS: Patients were evaluated prospectively through ongoing clinical care. RESULTS: Twenty-three patients were evaluated: 8 infantile GM1, 9 infantile Tay-Sachs disease, 6 infantile Sandhoff disease. Common patterns of clinical change included: hypotonia before 6months of age; severe motor skill impairment within first year of life; seizures; dysphagia and feeding-tube placement before 18months of age. Neurodevelopmental testing scores reached the floor of the testing scale by 20 to 28months of age. Vertebral beaking, kyphosis, and scoliosis were unique to patients with infantile GM1. Chest physiotherapy was associated with increased survival in iGM1 (p=0.0056). Miglustat combined with a low-carbohydrate ketogenic diet (the Syner-G regimen) in patients who received a feeding-tube was associated with increased survival in infantile GM1 (p=0.025). CONCLUSIONS: This is the first prospective study of the natural history of infantile gangliosidoses and the very first natural history of infantile GM1. The homogeneity of the infantile gangliosidoses phenotype as demonstrated by the clinical events timeline in this study provides promising secondary outcome measure candidates. This study indicates that overall survival is a meaningful primary outcome measure for future clinical trials due to reliable timing and early occurrence of this event. Combination therapy approaches, instead of monotherapy approaches, will likely be the best way to optimize clinical outcomes. Combination therapy approaches include palliative therapies (e.g., chest physiotherapy) along with treatments that address the underlying disease pathology (e.g. miglustat or future gene therapies).


Subject(s)
Gangliosidoses, GM2/physiopathology , Gangliosidoses/physiopathology , Gangliosidoses/therapy , Gangliosidosis, GM1/physiopathology , 1-Deoxynojirimycin/adverse effects , 1-Deoxynojirimycin/analogs & derivatives , 1-Deoxynojirimycin/therapeutic use , Diet, Ketogenic , Disaccharidases/antagonists & inhibitors , Female , Gangliosidoses/complications , Gangliosidoses, GM2/therapy , Gangliosidosis, GM1/therapy , Glycoside Hydrolase Inhibitors/adverse effects , Glycoside Hydrolase Inhibitors/therapeutic use , Humans , Infant , Male , Prospective Studies , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...