Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 44(25)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38658168

ABSTRACT

Hexanucleotide repeat expansions within the gene C9ORF72 are the most common cause of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). This disease-causing expansion leads to a reduction in C9ORF72 expression levels in patients, suggesting loss of C9ORF72 function could contribute to disease. To further understand the consequences of C9ORF72 deficiency in vivo, we generated a c9orf72 mutant zebrafish line. Analysis of the adult female spinal cords revealed no appreciable neurodegenerative pathology such as loss of motor neurons or increased levels of neuroinflammation. However, detailed examination of adult female c9orf72-/- retinas showed prominent neurodegenerative features, including a decrease in retinal thickness, gliosis, and an overall reduction in neurons of all subtypes. Analysis of rod and cone cells within the photoreceptor layer showed a disturbance in their outer segment structure and rhodopsin mislocalization from rod outer segments to their cell bodies and synaptic terminals. Thus, C9ORF72 may play a previously unappreciated role in retinal homeostasis and suggests C9ORF72 deficiency can induce tissue specific neuronal loss.


Subject(s)
C9orf72 Protein , Retina , Zebrafish , Animals , Female , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Retina/metabolism , Retina/pathology , Animals, Genetically Modified , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Zebrafish Proteins/deficiency , Proteins/genetics , Proteins/metabolism , Retinal Degeneration/genetics , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Spinal Cord/metabolism , Spinal Cord/pathology
2.
Nat Commun ; 15(1): 3648, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684645

ABSTRACT

Neuronal network formation is facilitated by recognition between synaptic cell adhesion molecules at the cell surface. Alternative splicing of cell adhesion molecules provides additional specificity in forming neuronal connections. For the teneurin family of cell adhesion molecules, alternative splicing of the EGF-repeats and NHL domain controls synaptic protein-protein interactions. Here we present cryo-EM structures of the compact dimeric ectodomain of two teneurin-3 isoforms that harbour the splice insert in the EGF-repeats. This dimer is stabilised by an EGF8-ABD contact between subunits. Cryo-EM reconstructions of all four splice variants, together with SAXS and negative stain EM, reveal compacted dimers for each, with variant-specific dimeric arrangements. This results in specific trans-cellular interactions, as tested in cell clustering and stripe assays. The compact conformations provide a structural basis for teneurin homo- and heterophilic interactions. Altogether, our findings demonstrate how alternative splicing results in rearrangements of the dimeric subunits, influencing neuronal recognition and likely circuit wiring.


Subject(s)
Alternative Splicing , Cryoelectron Microscopy , Neurons , Neurons/metabolism , Animals , Humans , Protein Multimerization , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/chemistry , Protein Isoforms/metabolism , Protein Isoforms/genetics , Protein Isoforms/chemistry , Models, Molecular
3.
J Dev Biol ; 9(1)2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33804189

ABSTRACT

Retinal photoreceptors are amongst the most metabolically active cells in the body, consuming more glucose as a metabolic substrate than even the brain. This ensures that there is sufficient energy to establish and maintain photoreceptor functions during and after their differentiation. Such high dependence on glucose metabolism is conserved across vertebrates, including zebrafish from early larval through to adult retinal stages. As the zebrafish retina develops rapidly, reaching an adult-like structure by 72 hours post fertilisation, zebrafish larvae can be used to study metabolism not only during retinogenesis, but also in functionally mature retinae. The interplay between rod and cone photoreceptors and the neighbouring retinal pigment epithelium (RPE) cells establishes a metabolic ecosystem that provides essential control of their individual functions, overall maintaining healthy vision. The RPE facilitates efficient supply of glucose from the choroidal vasculature to the photoreceptors, which produce metabolic products that in turn fuel RPE metabolism. Many inherited retinal diseases (IRDs) result in photoreceptor degeneration, either directly arising from photoreceptor-specific mutations or secondary to RPE loss, leading to sight loss. Evidence from a number of vertebrate studies suggests that the imbalance of the metabolic ecosystem in the outer retina contributes to metabolic failure and disease pathogenesis. The use of larval zebrafish mutants with disease-specific mutations that mirror those seen in human patients allows us to uncover mechanisms of such dysregulation and disease pathology with progression from embryonic to adult stages, as well as providing a means of testing novel therapeutic approaches.

SELECTION OF CITATIONS
SEARCH DETAIL
...