Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 8831, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37258601

ABSTRACT

Laser wakefield accelerators (LWFAs) can produce high-energy electron bunches in short distances. Successfully coupling these sources with undulators has the potential to form an LWFA-driven free-electron laser (FEL), providing high-intensity short-wavelength radiation. Electron bunches produced from LWFAs have a correlated distribution in longitudinal phase space: a chirp. However, both LWFAs and FELs have strict parameter requirements. The bunch chirp created using ideal LWFA parameters may not suit the FEL; for example, a chirp can reduce the high peak current required for free-electron lasing. We, therefore, design a flexible beamline that can accept either positively or negatively chirped LWFA bunches and adjust the chirp during transport to an undulator. We have used the accelerator design program MAD8 to design a beamline in stages, and to track particle bunches. The final beamline design can produce ambidirectional values of longitudinal dispersion ([Formula: see text]): we demonstrate values of + 0.20 mm, 0.00  mm and - 0.22 mm. Positive or negative values of [Formula: see text] apply a shear forward or backward in the longitudinal phase space of the electron bunch, which provides control of the bunch chirp. This chirp control during the bunch transport gives an additional free parameter and marks a new approach to matching future LWFA-driven FELs.

2.
Sci Rep ; 12(1): 20368, 2022 Nov 27.
Article in English | MEDLINE | ID: mdl-36437255

ABSTRACT

Optimizing the laser wakefield accelerator (LWFA) requires control of the intense driving laser pulse and its stable propagation. This is usually challenging because of mode mismatching arising from relativistic self-focusing, which invariably alters the velocity and shape of the laser pulse. Here we show how an intense pre-pulse can prepare the momentum/density phase-space distribution of plasma electrons encountered by a trailing laser pulse to control its propagation. This can also be used to minimize the evolution of the wakefield thus enhancing the stability of the LWFA, which is important for applications.

3.
Sci Rep ; 12(1): 6703, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35585094

ABSTRACT

Laser-wakefield accelerators (LWFAs) driven by widely available 100s TW-class near-infrared laser systems have been shown to produce GeV-level electron beams with 10s-100s pC charge in centimetre-scale plasma. As the strength of the ponderomotive force is proportional to the square of the laser wavelength, more efficient LWFAs could be realised using longer wavelength lasers. Here we present a numerical study showing that [Formula: see text], sub-picosecond CO2 lasers with peak powers of 100-800 TW can produce high-charge electron beams, exceeding that possible from LWFAs driven by femtosecond near-infrared lasers by up to three orders of magnitude. Depending on the laser and plasma parameters, electron beams with 10s MeV to GeV energy and 1-100 nC charge can be generated in 10-200 mm long plasma or gas media without requiring external guiding. The laser-to-electron energy conversion efficiency can be up to 70% and currents of 100s kA are achievable. A CO2 laser driven LWFA could be useful for applications requiring compact and industrially robust accelerators and radiations sources.

4.
Opt Express ; 30(3): 3455-3473, 2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35209603

ABSTRACT

We automate the mode-locked fiber laser design process using a modified genetic algorithm and an intuitive optimization loss function to control highly accurate polarization-resolved simulations of laser start-up dynamics without user interaction. We reconstruct both the cavity designs and output pulse characteristics of experimentally demonstrated Yb-fiber all-normal dispersion, dispersion-managed, and wavelength-tuneable all-anomalous dispersion Tm-fiber femtosecond lasers with exceptional accuracy using minimal prior knowledge, and show that our method can be used to predict new cavity designs and novel mode locking states that meet target pulse requirements. Our approach is directly applicable to a broad range of mode locking regimes, wavelengths, pulse energies, and repetition rates, requires no training or knowledge of the loss function gradients, and is scalable for use on supercomputers and inexpensive desktop computers.

5.
Sci Rep ; 11(1): 14595, 2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34272418

ABSTRACT

Attosecond duration relativistic electron bunches travelling through an undulator can generate brilliant coherent radiation in the visible to vacuum ultraviolet spectral range. We present comprehensive numerical simulations to study the properties of coherent emission for a wide range of electron energies and bunch durations, including space-charge effects. These demonstrate that electron bunches with r.m.s. duration of 50 as, nominal charge of 0.1 pC and energy range of 100-250 MeV produce [Formula: see text] coherent photons per pulse in the 100-600 nm wavelength range. We show that this can be enhanced substantially by self-compressing negatively chirped 100 pC bunches in the undulator to produce [Formula: see text] coherent photons with pulse duration of 0.5-3 fs.

6.
Opt Express ; 28(15): 21447-21463, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32752422

ABSTRACT

We report how the complex intra-pulse polarization dynamics of coherent optical wavebreaking and incoherent Raman amplification processes in all-normal dispersion (ANDi) fibers vary for femto and picosecond pump pulses. Using high temporal resolution vector supercontinuum simulations, we identify deterministic polarization dynamics caused by wavebreaking and self-phase modulation for femtosecond pulses and quasi-chaotic polarization evolution driven by Raman amplification of quantum noise for picosecond pulses. In contrast to cross-phase modulation instability, the Raman-based polarization noise has no power threshold and is reduced by aligning the higher energy polarization component with the lower index axis of the fiber. The degree of polarization stability is quantified using new time domain parameters that build on the spectrally averaged degree of coherence used in supercontinuum research to quantify the output spectral stability. We show that the spectral coherence is intrinsically linked to polarization noise, and that the noise will occur in both polarization maintaining (PM) and non-PM fibers, spanning a broad range of pulse energies, durations, and fiber birefringence values. This analysis provides an in-depth understanding of the nonlinear polarization dynamics associated with coherent and incoherent propagation in ANDi fibers.

8.
Sci Adv ; 6(22): eaaz7240, 2020 May.
Article in English | MEDLINE | ID: mdl-32523994

ABSTRACT

Recent developments in laser-wakefield accelerators have led to compact ultrashort X/γ-ray sources that can deliver peak brilliance comparable with conventional synchrotron sources. Such sources normally have low efficiencies and are limited to 107-8 photons/shot in the keV to MeV range. We present a novel scheme to efficiently produce collimated ultrabright γ-ray beams with photon energies tunable up to GeV by focusing a multi-petawatt laser pulse into a two-stage wakefield accelerator. This high-intensity laser enables efficient generation of a multi-GeV electron beam with a high density and tens-nC charge in the first stage. Subsequently, both the laser and electron beams enter into a higher-density plasma region in the second stage. Numerical simulations demonstrate that more than 1012 γ-ray photons/shot are produced with energy conversion efficiency above 10% for photons above 1 MeV, and the peak brilliance is above 1026 photons s-1 mm-2 mrad-2 per 0.1% bandwidth at 1 MeV. This offers new opportunities for both fundamental and applied research.

9.
Phys Rev Lett ; 122(16): 161601, 2019 Apr 26.
Article in English | MEDLINE | ID: mdl-31075012

ABSTRACT

A charged particle moving through a medium emits Cherenkov radiation when its velocity exceeds the phase velocity of light in that medium. Under the influence of a strong electromagnetic field, quantum fluctuations can become polarized, imbuing the vacuum with an effective anisotropic refractive index and allowing the possibility of Cherenkov radiation from the quantum vacuum. We analyze the properties of this vacuum Cherenkov radiation in strong laser pulses and the magnetic field around a pulsar, finding regimes in which it is the dominant radiation mechanism. This radiation process may be relevant to the excess signals of high energy photons in astrophysical observations.

10.
Sci Rep ; 8(1): 145, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29317689

ABSTRACT

Emission of radiation from electrons undergoing plasma oscillations (POs) at the plasma frequency has attracted interest because of the existence of intriguing and non-trivial coupling mechanism between the electrostatic PO and the emitted electromagnetic wave. While broadband emission from plasma waves in inhomogeneous plasma is well known, the underlying physics of narrowband emission at the plasma frequency observed in experiments and in solar radio-bursts is obscure. Here we show that a spatially-localized plasma dipole oscillation (PDO) can be generated when electrons are trapped in a moving train of potential wells produced by the ponderomotive force of two slightly detuned laser pulses that collide in plasma and give rise to a burst of quasi-monochromatic radiation. The energy radiated in the terahertz spectral region can reach an unprecedented several millijoules, which makes it suitable for applications requiring short pulses of high-intensity, narrowband terahertz radiation.

11.
Phys Med ; 42: 327-331, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28506453

ABSTRACT

Very high energy electrons (VHEE) in the range from 100 to 250MeV have the potential of becoming an alternative modality in radiotherapy because of their improved dosimetric properties compared with 6-20MV photons generated by clinical linear accelerators (LINACs). VHEE beams have characteristics unlike any other beams currently used for radiotherapy: femtosecond to picosecond duration electron bunches, which leads to very high dose per pulse, and energies that exceed that currently used in clinical applications. Dosimetry with conventional online detectors, such as ionization chambers or diodes, is a challenge due to non-negligible ion recombination effects taking place in the sensitive volumes of these detectors. FLUKA and Geant4 Monte Carlo (MC) codes have been employed to study the temporal and spectral evolution of ultrashort VHEE beams in a water phantom. These results are complemented by ion recombination measurements employing an IBA CC04 ionization chamber for a 165MeV VHEE beam. For comparison, ion recombination has also been measured using the same chamber with a conventional 20MeV electron beam. This work demonstrates that the IBA CC04 ionization chamber exhibits significant ion recombination and is therefore not suitable for dosimetry of ultrashort pulsed VHEE beams applying conventional correction factors. Further study is required to investigate the applicability of ion chambers in VHEE dosimetry.


Subject(s)
Electrons , Radiometry , Computer Simulation , Monte Carlo Method , Radiometry/instrumentation , Water
12.
Opt Express ; 22(19): 23480-8, 2014 Sep 22.
Article in English | MEDLINE | ID: mdl-25321817

ABSTRACT

Interest in phase contrast imaging methods based on electromagnetic wave coherence has increased significantly recently, particularly at X-ray energies. This is giving rise to a demand for effective simulation methods. Coherent imaging approaches are usually based on wave optics, which require significant computational resources, particularly for producing 2D images. Monte Carlo (MC) methods, used to track individual particles/photons for particle physics, are not considered appropriate for describing coherence effects. Previous preliminary work has evaluated the possibility of incorporating coherence in Monte Carlo codes. However, in this paper, we present the implementation of refraction in a model that is based on time of flight calculations and the Huygens-Fresnel principle, which allow reproducing the formation of phase contrast images in partially and fully coherent experimental conditions. The model is implemented in the FLUKA Monte Carlo code and X-ray phase contrast imaging simulations are compared with experiments and wave optics calculations.


Subject(s)
Computer Simulation , Microscopy, Phase-Contrast/instrumentation , Models, Theoretical , Monte Carlo Method , Phantoms, Imaging , Photons , Positron-Emission Tomography/instrumentation , Software , X-Rays
13.
Opt Lett ; 33(7): 651-3, 2008 Apr 01.
Article in English | MEDLINE | ID: mdl-18382506

ABSTRACT

Refractive index modification of pure poly(methyl methacrylate) (PMMA) is investigated as a function of pulse duration using femtosecond lasers at 800 and 387 nm wavelength. It is observed that at 800 nm, the refractive index is modified more efficiently as the pulse duration decreases below 100 fs, whereas at 387 nm, efficient index modification is accomplished with longer, 180 fs pulses. Results suggest that three- and two-photon absorption is responsible for modification of pure PMMA at 800 nm and 387 nm, respectively. Repeated irradiation with short pulses of low laser fluence allows control of the photomodification via incubation, thus reducing bulk damage.

14.
Rev Sci Instrum ; 78(4): 043103, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17477645

ABSTRACT

We present a method of generating 200 ns high-voltage (up to 40 kV) pulses operating at repetition rates of up to 100 kHz, which may be synchronized with laser pulses. These supplies are simple to make and were developed for ultrafast terahertz pulse generation from GaAs photoconductive antennas using a high-repetition-rate regeneratively amplified laser. We also show an improvement in signal-to-noise ratio over a continuous dc bias field and application of the supply to terahertz pulse generation.

SELECTION OF CITATIONS
SEARCH DETAIL
...