Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Molecules ; 25(13)2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32640512

ABSTRACT

2,4,6-trihydroxy-3-geranylacetophenone (tHGA) is a bioactive compound that shows excellent anti-inflammatory properties. However, its pharmacokinetics and metabolism have yet to be evaluated. In this study, a sensitive LC-HRMS method was developed and validated to quantify tHGA in rat plasma. The method showed good linearity (0.5-80 ng/mL). The accuracy and precision were within 10%. Pharmacokinetic investigations were performed on three groups of six rats. The first two groups were given oral administrations of unformulated and liposome-encapsulated tHGA, respectively, while the third group received intraperitoneal administration of liposome-encapsulated tHGA. The maximum concentration (Cmax), the time required to reach Cmax (tmax), elimination half-life (t1/2) and area under curve (AUC0-24) values for intraperitoneal administration were 54.6 ng/mL, 1.5 h, 6.7 h, and 193.9 ng/mL·h, respectively. For the oral administration of unformulated and formulated tHGA, Cmax values were 5.4 and 14.5 ng/mL, tmax values were 0.25 h for both, t1/2 values were 6.9 and 6.6 h, and AUC0-24 values were 17.6 and 40.7 ng/mL·h, respectively. The liposomal formulation improved the relative oral bioavailability of tHGA from 9.1% to 21.0% which was a 2.3-fold increment. Further, a total of 12 metabolites were detected and structurally characterized. The metabolites were mainly products of oxidation and glucuronide conjugation.


Subject(s)
Acetophenones/blood , Acetophenones/pharmacokinetics , Chromatography, Liquid/methods , Liposomes/administration & dosage , Phloroglucinol/analogs & derivatives , Tandem Mass Spectrometry/methods , Acetophenones/administration & dosage , Acetophenones/metabolism , Administration, Oral , Animals , Biological Availability , Injections, Intraperitoneal , Male , Phloroglucinol/administration & dosage , Phloroglucinol/blood , Phloroglucinol/metabolism , Phloroglucinol/pharmacokinetics , Plasma/chemistry , Rats , Rats, Sprague-Dawley
2.
Ultrastruct Pathol ; 44(1): 130-140, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31967489

ABSTRACT

Mefenamic acid (MFA) treatment is associated with a number of cellular effects that potentiate the incidence of renal toxicity. The aim of this study is to investigate the potential ultrastructural alterations induced by various preparations of MFA (free MFA, MFA-Tween 80 liposomes, and MFA-DDC liposomes) on the renal tissues. Sprague-Dawley rats were subjected to a daily dose of MFA preparations for 28 days. Renal biopsies from all groups of rats under study were processed for transmission electron microscopic examination. The findings revealed that MFA preparations induced various ultrastructural alterations including mitochondrial injury, nuclear and lysosomal alterations, tubular cells steatosis, apoptotic activity, autophagy, and nucleophagy. These alterations were more clear in rats received free MFA, and MFA-Tween 80 liposomes than those received MFA-DDC liposomes. It is concluded that MFA-DDC liposomes are less potential to induce renal damage than free MFA and MFA-Tween 80 liposomes. Thus, MFA-DDC liposomes may offer an advantage of safe drug delivery.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/toxicity , Kidney/drug effects , Kidney/ultrastructure , Mefenamic Acid/toxicity , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Female , Liposomes , Mefenamic Acid/administration & dosage , Rats , Rats, Sprague-Dawley
3.
Braz. J. Pharm. Sci. (Online) ; 55: e17870, 2019. tab, graf
Article in English | LILACS | ID: biblio-1039075

ABSTRACT

Mefenamic acid (MFA) is a hydrophobic drug with low dissolution rate. This study aimed to develop stable and reproducible aqueous formulations of MFA using liposomes as drug carriers. The drug entrapment, particles size and drug release profiles, and stability and reproducibility of the liposomes were determined. In addition, the maximum tolerated dose (MTD) was determined in rats via the oral and intraperitoneal routes of administration. Also, the anti-inflammatory efficacy of these liposomes was evaluated using carrageenan-induced paw edema model in rats. MFA-DDC based liposomes demonstrated a drug entrapment efficacy of 93.6%, particles size of 170.9 nm, and polydispersity index of 0.24 which were not statistically affected when stored in room and refrigerated temperatures for at least 4 weeks. The MTD of the intraperitoneally administrated MFA-loaded liposomes was 20 mg MFA/kg, whereas for those of oral administrations, it was up to 80 mg MFA/kg. Intraperitoneal dose (80 mg MFA/kg) of MFA-DDC liposomes induced extrapyramidal symptoms associated with significant elevation in serum potassium and muscle enzymes. Moreover, significant inhibition of paw edema was demonstrated by the oral and intraperitoneal routes. These findings suggest that MFA-DDC based liposomes are an effective formulation of MFA and recommend the use of bioequivalence assessments with commercial formulations.


Subject(s)
Animals , Female , Rats , Mefenamic Acid/analysis , Ditiocarb/analysis , Liposomes/agonists , In Vitro Techniques , Carrageenan
4.
Ultrastruct Pathol ; 41(5): 335-345, 2017.
Article in English | MEDLINE | ID: mdl-28829237

ABSTRACT

Mefenamic acid (MFA) is used as an anti-inflammatory, antinociceptive, and antipyretic agent for treatment of a wide range of pathological disorders. While the uncertainty of its safety and the poor oral bioavailability constitute the major limiting factors of its medical use, considerable efforts including liposomal encapsulation are needed to achieve maximum therapeutic advantages. The current work was conducted to investigate the ultrastructural alterations in the liver induced by free MFA and its liposomal preparation. Female Sprague-Dawley rats were treated with daily oral doses of either free MFA or MFA entrapped in Tween 80 inoculated liposomes at the concentration of 80 mg/kg for 28 days. Ultrathin sections were prepared from biopsies taken from the liver of each member of all animals under study and subjected to examination by transmission electron microscopy. The liver of rats that were exposed to liposomal MFA showed more ultrastructural alterations than the rats treated with the free drug. While both groups of rats demonstrated sinusoidal dilatation, Kupffer cell hyperplasia, mitochondrial damage, and nuclear alterations, rats treated with liposome-encapsulated MFA induced an increase in the multiple lysosomes formation, hepatocytic steatosis, and apoptotic activity than free MFA-treated rats. The ultrastructural findings of the present study indicate that the use of liposomal MFA induces more hepatic damage than the use of free MFA.


Subject(s)
Hepatocytes/ultrastructure , Liposomes/pharmacology , Liver/drug effects , Mefenamic Acid/pharmacology , Animals , Female , Hepatocytes/drug effects , Liver/ultrastructure , Microscopy, Electron, Transmission/methods , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...