Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 4548, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35927238

ABSTRACT

Alternatively-activated, M2-like tumor-associated macrophages (TAM) strongly contribute to tumor growth, invasiveness and metastasis. Technologies to disable the pro-tumorigenic function of these TAMs are of high interest to immunotherapy research. Here we show that by designing engineered nanoliposomes bio-mimicking peroxidated phospholipids that are recognised and internalised by scavenger receptors, TAMs can be targeted. Incorporation of phospholipids possessing a terminal carboxylate group at the sn-2 position into nanoliposome bilayers drives their uptake by M2 macrophages with high specificity. Molecular dynamics simulation of the lipid bilayer predicts flipping of the sn-2 tail towards the aqueous phase, while molecular docking data indicates interaction of the tail with Scavenger Receptor Class B type 1 (SR-B1). In vivo, the engineered nanoliposomes are distributed specifically to M2-like macrophages and, upon delivery of the STAT6 inhibitor (AS1517499), zoledronic acid or muramyl tripeptide, these cells promote reduction of the premetastatic niche and/or tumor growth. Altogether, we demonstrate the efficiency and versatility of our engineered "tail-flipping" nanoliposomes in a pre-clinical model, which paves the way to their development as cancer immunotherapeutics in humans.


Subject(s)
Macrophages , Neoplasms , Humans , Immunotherapy , Macrophages/metabolism , Molecular Docking Simulation , Neoplasms/drug therapy , Phospholipids/metabolism
2.
J Colloid Interface Sci ; 627: 415-426, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35863200

ABSTRACT

HYPOTHESIS: Capillary suspensions feature networks of particles connected by liquid bridges, which are obtained by adding a small amount of a second immiscible liquid to a suspension. It is possible to link the network formation as well as the rheological behaviour of capillary suspensions to the intermolecular interactions of their constituents. EXPERIMENTS AND SIMULATIONS: Through a combination of experimental and numerical methods, we present a novel approach, based on Hansen solubility parameters computed from Molecular Dynamics (MD) simulations, to rationalize and predict the rheological behaviour of capillary suspensions. We investigated the formation of capillary suspensions for various combinations of bulk and secondary liquids mixed with hydrophilic silica particles. The predictions were confirmed experimentally by rheological analysis, interfacial tension measurements and microscopy (CLSM) imaging. FINDINGS: Numerical and experimental results show that the Hansen solubility parameters theory allows to predict the formation of capillary suspensions, whose strength exponentially decays with decreasing intermolecular interactions between the secondary liquids and the dispersed particles. High immiscibility between the bulk and secondary liquid strengthens the gel up to a critical immiscibility point, above which the strength of the gel remains mostly affected by the affinity between the secondary liquids and the dispersed particles. Furthermore, we find that hydrogen-bonding and polar interactions control the formation of capillary suspensions. This simple approach can guide the selection of adequate solvents and immiscible secondary liquids, allowing an easy formulation of new particulate-based gels.


Subject(s)
Hydrogen , Silicon Dioxide , Gels , Solvents , Suspensions
3.
J Colloid Interface Sci ; 575: 326-336, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32387741

ABSTRACT

HYPOTHESIS: The Hansen Solubility Parameters (HSP) derived from Molecular Dynamics (MD) simulations can be used as a fast approach to predict surfactants adsorption on a solid surface. Experiments and simulations: We focused on the specific case of siloxane-based surfactants adsorption on silicon oxide surface (SiO2), encountered in inkjet printing processes. A simplified atomistic model of the SiO2 surface was designed to enable the computation of its solubility parameter using MD, and to subsequently determine the interactions of the SiO2 surface with the siloxane-based surfactant and the various solvents employed. Surfactant adsorption was characterized experimentally using contact angle goniometry, ellipsometry, XPS and AFM. FINDINGS: Comparison of the numerical results with experiments showed that the HSP theory allows to identify the range of solvents that are likely to prevent surfactant adsorption on the SiO2 surface. The proposed approach indicates that polar solvents, such as acetone and triacetin, which are strongly attracted to the silicon oxide surface might form a shield that prevents siloxane-based surfactants adsorption. This simple approach, can guide the selection of adequate solvents for surfaces and surfactants with specific chemical structures, providing opportunities for controlling interfacial adsorption.

4.
Soft Matter ; 16(17): 4299-4310, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32313919

ABSTRACT

We present a fast and efficient approach to predict the wettability and spreading of liquids on polymeric substrates. First, a molecular dynamics parameterization is proposed for the calculation of the solubility parameter for 74 compounds including surfactants typically used in inkjet printing. Then, we introduce a molecular geometrical factor to relate the solubility parameter to the surface tension, obtaining estimates in remarkable agreement with experiments. By using a modified Young-Fowkes equation, the contact angles of liquids on various polymeric substrates are determined and their dependence on the hydrogen bonding, dispersion and polar contribution of the solubility parameter are investigated. We find that wetting properties are obtained with a good accuracy when taking into account the hydrogen-bonding and polar interactions in the geometric sum of the solubility parameter. Based on these findings, a 3D wetting space is proposed to evaluate liquids wettability and judge their suitability for specific substrates. This will enable easy formulation of liquids with wettability tailored for a particular surface and application.

5.
Sci Rep ; 9(1): 13480, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31530824

ABSTRACT

Granular segregation is a common, yet still puzzling, phenomenon encountered in many natural and engineering processes. Here, we experimentally investigate the effect of particles cohesion on segregation in dry monodisperse and bidisperse systems using a rotating drum mixer. Chemical silanization, glass surface functionalization via a Silane coupling agent, is used to produce cohesive dry glass particles. The cohesive force between the particles is controlled by varying the reaction duration of the silanization process, and is measured using an in-house device specifically designed for this study. The effects of the cohesive force on flow and segregation are then explored and discussed. For monosized particulate systems, while cohesionless particles perfectly mix when tumbled, highly cohesive particles segregate. For bidisperse mixtures of particles, an adequate cohesion-tuning reduces segregation and enhances mixing. Based on these results, a simple scheme is proposed to describe the system's mixing behaviour with important implications for the control of segregation or mixing in particulate industrial processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...