Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mach Learn ; 110(1): 1-14, 2021.
Article in English | MEDLINE | ID: mdl-33318723

ABSTRACT

The COVID-19 global pandemic is a threat not only to the health of millions of individuals, but also to the stability of infrastructure and economies around the world. The disease will inevitably place an overwhelming burden on healthcare systems that cannot be effectively dealt with by existing facilities or responses based on conventional approaches. We believe that a rigorous clinical and societal response can only be mounted by using intelligence derived from a variety of data sources to better utilize scarce healthcare resources, provide personalized patient management plans, inform policy, and expedite clinical trials. In this paper, we introduce five of the most important challenges in responding to COVID-19 and show how each of them can be addressed by recent developments in machine learning (ML) and artificial intelligence (AI). We argue that the integration of these techniques into local, national, and international healthcare systems will save lives, and propose specific methods by which implementation can happen swiftly and efficiently. We offer to extend these resources and knowledge to assist policymakers seeking to implement these techniques.

2.
IEEE J Biomed Health Inform ; 24(2): 424-436, 2020 02.
Article in English | MEDLINE | ID: mdl-31331898

ABSTRACT

Accurate prediction of disease trajectories is critical for early identification and timely treatment of patients at risk. Conventional methods in survival analysis are often constrained by strong parametric assumptions and limited in their ability to learn from high-dimensional data. This paper develops a novel convolutional approach that addresses the drawbacks of both traditional statistical approaches as well as recent neural network models for survival. We present Match-Net: a missingness-aware temporal convolutional hitting-time network, designed to capture temporal dependencies and heterogeneous interactions in covariate trajectories and patterns of missingness. To the best of our knowledge, this is the first investigation of temporal convolutions in the context of dynamic prediction for personalized risk prognosis. Using real-world data from the Alzheimer's disease neuroimaging initiative, we demonstrate state-of-the-art performance without making any assumptions regarding underlying longitudinal or time-to-event processes-attesting to the model's potential utility in clinical decision support.


Subject(s)
Alzheimer Disease/diagnostic imaging , Neural Networks, Computer , Algorithms , Humans , Survival Analysis
3.
Br J Radiol ; 92(1100): 20190001, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31112393

ABSTRACT

Machine learning approaches to problem-solving are growing rapidly within healthcare, and radiation oncology is no exception. With the burgeoning interest in machine learning comes the significant risk of misaligned expectations as to what it can and cannot accomplish. This paper evaluates the role of machine learning and the problems it solves within the context of current clinical challenges in radiation oncology. The role of learning algorithms within the workflow for external beam radiation therapy are surveyed, considering simulation imaging, multimodal fusion, image segmentation, treatment planning, quality assurance, and treatment delivery and adaptation. For each aspect, the clinical challenges faced, the learning algorithms proposed, and the successes and limitations of various approaches are analyzed. It is observed that machine learning has largely thrived on reproducibly mimicking conventional human-driven solutions with more efficiency and consistency. On the other hand, since algorithms are generally trained using expert opinion as ground truth, machine learning is of limited utility where problems or ground truths are not well-defined, or if suitable measures of correctness are not available. As a result, machines may excel at replicating, automating and standardizing human behaviour on manual chores, meanwhile the conceptual clinical challenges relating to definition, evaluation, and judgement remain in the realm of human intelligence and insight.


Subject(s)
Machine Learning , Radiation Oncology/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...