Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
1.
J Am Chem Soc ; 146(12): 8016-8030, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38470819

ABSTRACT

There have been significant advances in the flexibility and power of in vitro cell-free translation systems. The increasing ability to incorporate noncanonical amino acids and complement translation with recombinant enzymes has enabled cell-free production of peptide-based natural products (NPs) and NP-like molecules. We anticipate that many more such compounds and analogs might be accessed in this way. To assess the peptide NP space that is directly accessible to current cell-free technologies, we developed a peptide parsing algorithm that breaks down peptide NPs into building blocks based on ribosomal translation logic. Using the resultant data set, we broadly analyze the biophysical properties of these privileged compounds and perform a retrobiosynthetic analysis to predict which peptide NPs could be directly synthesized in augmented cell-free translation reactions. We then tested these predictions by preparing a library of highly modified peptide NPs. Two macrocyclases, PatG and PCY1, were used to effect the head-to-tail macrocyclization of candidate NPs. This retrobiosynthetic analysis identified a collection of high-priority building blocks that are enriched throughout peptide NPs, yet they had not previously been tested in cell-free translation. To expand the cell-free toolbox into this space, we established, optimized, and characterized the flexizyme-enabled ribosomal incorporation of piperazic acids. Overall, these results demonstrate the feasibility of cell-free translation for peptide NP total synthesis while expanding the limits of the technology. This work provides a novel computational tool for exploration of peptide NP chemical space, that could be expanded in the future to allow design of ribosomal biosynthetic pathways for NPs and NP-like molecules.


Subject(s)
Biological Products , Biological Products/chemistry , Cheminformatics , Peptides/chemistry , Peptide Biosynthesis , Amino Acids
2.
BMJ Open Respir Res ; 10(1)2023 12 20.
Article in English | MEDLINE | ID: mdl-38123476

ABSTRACT

INTRODUCTION: The genetic determinants of fractional exhalation of nitric oxide (FeNO), a marker of lung inflammation, are understudied in Black individuals. Alpha globin (HBA) restricts nitric oxide signalling in arterial endothelial cells via interactions with nitric oxide synthase; however, its role in regulating the release of NO from respiratory epithelium is less well understood. We hypothesised that an HBA gene deletion, common among Black individuals, would be associated with higher FeNO. METHODS: Healthy Black adults were enrolled at four study sites in North Carolina from 2005 to 2008. FeNO was measured in triplicate using a nitric oxide analyzer. The -3.7 kb HBA gene deletion was genotyped using droplet digital PCR on genomic DNA. The association of FeNO with HBA copy number was evaluated using multivariable linear regression employing a linear effect of HBA copy number and adjusting for age, sex and serum immunoglobulin-E levels. Post-hoc analysis employing a recessive mode of inheritance was performed. RESULTS: 895 individuals were in enrolled in the study and 720 consented for future genetic research; 643 had complete data and were included in this analysis. Median (25th, 75th) FeNO was 20 (13, 31) ppb. HBA genotypes were: 30 (4.7%) -a/-a, 197 (30.6%) -a/aa, 405 (63%) aa/aa and 8 (1.2%) aa/aaa. Subjects were 35% male with median age 20 (19, 22) years. Multivariable linear regression analysis revealed no association between FeNO and HBA copy number (ß=-0.005 (95% CI -0.042 to 0.033), p=0.81). In the post-hoc sensitivity analysis, homozygosity for the HBA gene deletion was associated with higher FeNO (ß=0.107 (95% CI 0.003 to 0.212); p=0.045). CONCLUSION: We found no association between HBA copy number and FeNO using a prespecified additive genetic model. However, a post hoc recessive genetic model found FeNO to be higher among subjects homozygous for the HBA deletion.


Subject(s)
Alpha-Globulins , Black or African American , Gene Dosage , Nitric Oxide , Black or African American/genetics , Alpha-Globulins/genetics , Gene Dosage/genetics , Exhalation , Nitric Oxide/metabolism , Fractional Exhaled Nitric Oxide Testing , Gene Deletion , Humans , Male , Female , Young Adult , Adult , Genotype
3.
J Laparoendosc Adv Surg Tech A ; 33(6): 566-569, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37001169

ABSTRACT

Background: Squamous cell carcinoma (SCC) accounts for 90% of all head and neck cancers. In veterans, the prevalence of head and neck SCC is nearly twice as high compared with the civilian population. Neck dissection plays an important role in the treatment algorithm for patients with head and neck SCC. The aim of this manuscript was to investigate predictors of survival in patients with head and neck SCC who underwent curative treatment. Methods: Patients with head and neck SCC who underwent treatment with curative intent were included in this study. Data collected included clinical-demographic characteristics, tumor characteristics, and outcome. The primary endpoint was 3-year overall survival (OS), and the secondary endpoints were disease recurrence and distant metastases. Results: A total of 149 patients met inclusion criteria, and most patients were treated with surgery plus adjuvant chemoradiation (52%). The 3-year OS for the entire cohort was 55.7%. There was no statistically significant difference in mortality when comparing the various treatment types. Black patients (hazard ratio [HR] = 1.70, P = .023) and other non-white patients (HR = 3.88, P = .027) had worse 3-year OS compared with white patients. Advanced tumor classification (T4a) was also associated with worse 3-year OS (HR = 3.088, P = .003) and increased risk of cancer recurrence or distant metastases (HR = 3.34, P = .013). Conclusions: Risk factors linked to poor survival among this cohort of veterans with head and neck SCC included non-white race and advanced tumor classification. Neck dissection remains an integral aspect of the treatment algorithm for SCC of the head and neck and can provide regional control of malignant disease.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Veterans , Humans , Radiotherapy, Adjuvant , Retrospective Studies , Neoplasm Recurrence, Local/surgery , Head and Neck Neoplasms/surgery , Carcinoma, Squamous Cell/surgery , Neck Dissection/methods
4.
J Am Chem Soc ; 145(3): 1512-1517, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36630539

ABSTRACT

mRNA display is revolutionizing peptide drug discovery through its ability to quickly identify potent peptide binders of therapeutic protein targets. Methods to expand the chemical diversity of display libraries are continually needed to increase the likelihood of identifying clinically relevant peptide ligands. Orthogonal aminoacyl-tRNA synthetases (ORSs) have proven utility in cellular genetic code expansion, but are relatively underexplored for in vitro translation (IVT) and mRNA display. Herein, we demonstrate that the promiscuous ORS p-CNF-RS can incorporate noncanonical amino acids at amber codons in IVT, including the novel substrate p-cyanopyridylalanine (p-CNpyrA), to enable a pyridine-thiazoline (pyr-thn) macrocyclization in mRNA display. Pyr-thn-based selections against the deubiquitinase USP15 yielded a potent macrocyclic binder that exhibits good selectivity for USP15 and close homologues over other ubiquitin-specific proteases (USPs). Overall, this work exemplifies how promiscuous ORSs can both expand side chain diversity and provide structural novelty in mRNA display libraries through a heterocycle forming macrocyclization.


Subject(s)
Amino Acyl-tRNA Synthetases , RNA, Messenger/genetics , RNA, Messenger/metabolism , Amino Acyl-tRNA Synthetases/metabolism , Genetic Code , Amino Acids/chemistry , Peptides/genetics , RNA, Transfer/metabolism
5.
J Am Chem Soc ; 144(46): 21116-21124, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36351243

ABSTRACT

Thiazole-containing pyritides (thiopeptides) are ribosomally synthesized and post-translationally modified peptides (RiPPs) that have attracted interest owing to their potent biological activities and structural complexity. The class-defining feature of a thiopeptide is a six-membered, nitrogenous heterocycle formed by an enzymatic [4 + 2]-cycloaddition. In rare cases, piperidine or dehydropiperidine (DHP) is present; however, the aromatized pyridine is considerably more common. Despite significant effort, the mechanism by which the central pyridine is formed remains poorly understood. Building on our recent observation of the Bycroft-Gowland intermediate (i.e., the direct product of the [4 + 2]-cycloaddition), we interrogated thiopeptide pyridine synthases using a combination of targeted mutagenesis, kinetic assays, substrate analogs, enzyme-substrate cross-linking, and chemical rescue experiments. Collectively, our data delineate roles for several conserved residues in thiopeptide pyridine synthases. A critical tyrosine facilitates the final aromatization step of pyridine formation. This work provides a foundation for further exploration of the [4 + 2]-cycloaddition reaction and future customization of pyridine-containing macrocyclic peptides.


Subject(s)
Peptides , Thiazoles , Peptides/chemistry , Thiazoles/chemistry , Cycloaddition Reaction , Pyridines
6.
Cartilage ; 13(1): 19476035221081466, 2022.
Article in English | MEDLINE | ID: mdl-35313741

ABSTRACT

OBJECTIVE: Tissue-engineered cartilage implants must withstand the potential inflammatory and joint loading environment for successful long-term repair of defects. The work's objectives were to develop a novel, direct cartilage-macrophage co-culture system and to characterize interactions between self-assembled neocartilage and differentially stimulated macrophages. DESIGN: In study 1, it was hypothesized that the proinflammatory response of macrophages would intensify with increasing construct stiffness; it was expected that the neocartilage would display a decrease in mechanical properties after co-culture. In study 2, it was hypothesized that bioactive factors would protect neocartilage properties during macrophage co-culture. Also, it was hypothesized that interleukin 10 (IL-10)-stimulated macrophages would improve neocartilage mechanical properties compared to lipopolysaccharide (LPS)-stimulated macrophages. RESULTS: As hypothesized, stiffer neocartilage elicited a heightened proinflammatory macrophage response, increasing tumor necrosis factor alpha (TNF-α) secretion by 5.47 times when LPS-stimulated compared to construct-only controls. Interestingly, this response did not adversely affect construct properties for the stiffest neocartilage but did correspond to a significant decrease in aggregate modulus for soft and medium stiffness constructs. In addition, bioactive factor-treated constructs were protected from macrophage challenge compared to chondrogenic medium-treated constructs, but IL-10 did not improve neocartilage properties, although stiff constructs appeared to bolster the anti-inflammatory nature of IL-10-stimulated macrophages. However, co-culture of bioactive factor-treated constructs with LPS-treated macrophages reduced TNF-α secretion by over 4 times compared to macrophage-only controls. CONCLUSIONS: In conclusion, neocartilage stiffness can mediate macrophage behavior, but stiffness and bioactive factors prevent macrophage-induced degradation. Ultimately, this co-culture system could be utilized for additional studies to develop the burgeoning field of cartilage mechano-immunology.


Subject(s)
Cartilage, Articular , Chondrocytes , Cartilage, Articular/physiology , Chondrocytes/metabolism , Coculture Techniques , Interleukin-10/metabolism , Lipopolysaccharides/metabolism , Lipopolysaccharides/pharmacology , Macrophages , Tumor Necrosis Factor-alpha
8.
Oman Med J ; 36(5): e307, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34733553

ABSTRACT

OBJECTIVES: We sought to determine whether SARS-CoV-2 infections are associated with anosmia and if this virus infects other neuronal cells. We utilized male and female olfactory neuronal cell lines and other olfactory cell lines to determine the viral targets. METHODS: We used four undifferentiated and two partially differentiated human developing neuronal cell lines. Infectivity was confirmed by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), immunofluorescence assay (IFA) probing with anti-SARS-CoV-2 antibody, evaluation of cytopathic effects, and neurite formation. We induced partial differentiation of all cell lines (since both olfactory cell lines were terminally differentiated) with retinoic acid (RA) to determine whether differentiation was a factor in viral permissiveness. The expression of serine protease, transmembrane serine protease 2 (TMPRSS2), and angiotensin-converting enzyme II (ACE2) receptors were examined by RT-qPCR and IFA to determine the mechanism of viral entry. RESULTS: Four to five days after exposure, both olfactory cell lines exhibited morphological evidence of infection; IFA analyses indicated that ~30% of the neurons were SARS-CoV-2 positive. At two weeks, 70-80% were positive for SARS-CoV-2 antigens. The partially differentiated (CRL-2266 and CRL-2267) and undifferentiated cell lines (CRL-2142, CRL-2149, CRL-127, and CDL-2271) were essentially non-permissive. After RA treatment, only CRL-127 exhibited slight permissiveness (RT-qPCR). The TMPRSS2 receptor showed high expression in olfactory neurons, but low expression in RA treated CRL-127. ACE2 exhibited high expression in olfactory neurons, whereas other cell lines showed low expression, including RA-treated cell lines. ACE2 expression slightly increased in CRL-127 post RA-treatment. CONCLUSIONS: Our studies confirm neurotropism of SARS-CoV-2 to olfactory neurons with viral entry likely mediated by TMPRSS2/ACE2. Other neuronal cell lines were non-permissive. Our results established that the nerve cells were infected regardless of male or female origin and strengthened the reported association of COVID-19 with loss of smell in infected individuals.

9.
Biomater Sci ; 9(23): 7851-7861, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34514479

ABSTRACT

Evaluating the host immune response to biomaterials is an essential step in the development of medical devices and tissue engineering strategies. To aid in this process, in vitro studies, whereby immune cells such as macrophages are cultured on biomaterials, can often expedite high throughput testing of many materials prior to implantation. While most studies to date utilize murine or human cells, the use of porcine macrophages has been less well described, despite the prevalent use of porcine models in medical device and tissue engineering development. In this study, we describe the isolation and characterization of porcine bone marrow- and peripheral blood-derived macrophages, and their interactions with biomaterials. We confirmed the expression of the macrophage surface markers CD68 and F4/80 and characterized the porcine macrophage response to the inflammatory stimulus, bacterial lipopolysaccharide. Finally, we investigated the inflammatory and fusion response of porcine macrophages cultured on different stiffness hydrogels, and we found that stiffer hydrogels enhanced inflammatory activation by more than two-fold and promoted fusion to form foreign body giant cells. Together, this study establishes the use of porcine macrophages in biomaterial testing and reveals a stiffness-dependent effect on biomaterial-induced giant cell formation.


Subject(s)
Biocompatible Materials , Macrophages , Swine , Animals , Hydrogels , Materials Testing , Tissue Engineering
10.
World J Surg ; 45(11): 3306-3312, 2021 11.
Article in English | MEDLINE | ID: mdl-34351487

ABSTRACT

PURPOSE: To mitigate intraoperative adverse events, it is important to understand the context in which these errors occur. The purpose of this study is to characterize the IAEs and potential distractions that occur in minimally invasive urologic procedures. METHODS: We conducted a prospective cohort study in patients undergoing laparoscopic urologic surgery at an academic health center. The OR Black Box, a unique technology system which captures video and audio recordings of the operating room as well as the operative field, was used to collect data regarding procedure type, critical step, IAEs, and distractions. RESULTS: Of a total of 80 cases analyzed, the majority of these cases were partial nephrectomy (n = 36; 45%), radical nephrectomy (n = 20; 25%), and adrenalectomy (n = 4; 5%). Across all cases, there were a total of 138 clinically significant IAEs, 10 of which (14%) were of the highest severity (five on the SEVerity of intraoperative Events and Rectification Tool (SEVERE) matrix). Of these, 70 (51%) occurred during an a priori defined critical step of the operation. Distractions were common across all cases. The median rate of external communication per case was 16 events (IQR 11-22); and per critical step was 4 (IQR 2.75-8), while median room traffic per case was 65 entries/exits (IQR 42-76); and per critical step was 17 (IQR 10-65). CONCLUSION: Our data demonstrate that IAEs occur frequently during all phases of the operation at hand. Future study will be required to examine the role of distractions and IAE as well as IAE and their relationship to post-operative clinical outcomes.


Subject(s)
Laparoscopy , Operating Rooms , Humans , Intraoperative Complications , Patient Safety , Prospective Studies
11.
Am J Sports Med ; 49(5): 1305-1312, 2021 04.
Article in English | MEDLINE | ID: mdl-33667144

ABSTRACT

BACKGROUND: Although the toxic effects of bupivacaine on chondrocyte monolayer culture have been well described, its cellular and mechanical effects on native and engineered articular cartilage remain unclear. For the repair of articular cartilage defects, fresh autologous and allogenic cartilage grafts are commonly used, and engineered cell-based therapies are emerging. The outcome of grafting therapies aimed at repairing damaged cartilage relies largely on maintaining proper viability and mechanical suitability of the donor tissues. PURPOSE: To investigate the in vitro effects of single bupivacaine exposure on the viability and mechanics of 2 cartilage graft types: native articular cartilage and engineered neocartilage. STUDY DESIGN: Controlled laboratory study. METHODS: Articular cartilage explants were harvested from the bovine stifle femoral condyles, and neocartilage constructs were engineered from bovine stifle chondrocytes using the self-assembling process, a scaffold-free approach to engineer cartilage tissue. Both explants and neocartilage were exposed to chondrogenic medium containing a clinically applicable bolus of 0.5%, 0.25%, or 0% (control) bupivacaine for 1 hour, followed by fresh medium wash and exchange. Cell viability and matrix content (collagen and glycosaminoglycan) were assessed at t = 24 hours after treatment, and compressive mechanical properties were assessed with creep indentation testing at t = 5 to 6 days after treatment. RESULTS: Single bupivacaine exposure was chondrotoxic in both explants and neocartilage, with 0.5% bupivacaine causing a significant decrease in chondrocyte viability compared with the control condition (55.0% ± 13.4% vs 71.9% ± 13.5%; P < .001). Bupivacaine had no significant effect on matrix content for either tissue type. There was significant weakening of the mechanical properties in the neocartilage when treated with 0.5% bupivacaine compared with control, with decreased aggregate modulus (415.8 ± 155.1 vs 660.3 ± 145.8 kPa; P = .003), decreased shear modulus (143.2 ± 14.0 vs 266.5 ± 89.2 kPa; P = .002), and increased permeability (14.7 ± 8.1 vs 6.6 ± 1.7 × 10-15 m4/Ns; P = .009). Bupivacaine exposure did not have a significant effect on the mechanical properties of native cartilage explants. CONCLUSION: Single bupivacaine exposure resulted in significant chondrotoxicity in native explants and neocartilage and significant weakening of mechanical properties of neocartilage. The presence of abundant extracellular matrix does not appear to confer any additional resistance to the toxic effects of bupivacaine. CLINICAL RELEVANCE: Clinicians should be judicious regarding the use of intra-articular bupivacaine in the setting of articular cartilage repair.


Subject(s)
Bupivacaine , Cartilage, Articular , Animals , Cattle , Chondrocytes , Chondrogenesis , Knee Joint , Tissue Engineering
12.
Cancer Res ; 81(8): 2171-2183, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33558334

ABSTRACT

Ewing sarcoma is the second most common pediatric bone cancer, with a 5-year survival rate for metastatic disease of only 20%. Recent work indicates that survival is strongly correlated with high levels of tumor-infiltrating lymphocytes (TIL), whose abundance is associated with IFN-inducible chemokines CXCL10 and CCL5. However, the tumor-intrinsic factors that drive chemokine production and TIL recruitment have not been fully elucidated. We previously showed that ubiquitin-specific protease 6 (USP6) directly deubiquitinates and stabilizes Jak1, thereby inducing an IFN signature in Ewing sarcoma cells. Here, we show that this gene set comprises chemokines associated with immunostimulatory, antitumorigenic functions, including CXCL10 and CCL5. USP6 synergistically enhanced chemokine production in response to exogenous IFN by inducing surface upregulation of IFNAR1 and IFNGR1. USP6-expressing Ewing sarcoma cells stimulated migration of primary human monocytes and T lymphocytes and triggered activation of natural killer (NK) cells in vitro. USP6 inhibited Ewing sarcoma xenograft growth in nude but not NSG mice and was accompanied by increased intratumoral chemokine production and infiltration and activation of NK cells, dendritic cells, and macrophages, consistent with a requirement for innate immune cells in mediating the antitumorigenic effects of USP6. High USP6 expression in patients with Ewing sarcoma was associated with chemokine production, immune infiltration, and improved survival. This work reveals a previously unrecognized tumor-suppressive function for USP6, which engenders an immunostimulatory microenvironment through pleiotropic effects on multiple immune lineages. This further raises the possibility that USP6 activity may be harnessed to create a "hot" tumor microenvironment in immunotherapy. SIGNIFICANCE: This study reveals a novel tumor-suppressive function for USP6 by inducing an immunostimulatory microenvironment, suggesting that USP6 activity may be exploited to enhance immunotherapy regimens.


Subject(s)
Bone Neoplasms/genetics , Lymphocytes, Tumor-Infiltrating , Sarcoma, Ewing/genetics , Tumor Suppressor Proteins/physiology , Ubiquitin Thiolesterase/physiology , Animals , Bone Neoplasms/immunology , Bone Neoplasms/metabolism , Bone Neoplasms/mortality , Cell Movement/drug effects , Chemokine CCL5/biosynthesis , Chemokine CXCL10/biosynthesis , Dendritic Cells/drug effects , Humans , Immunotherapy , Interferons/pharmacology , Janus Kinase 1/metabolism , Killer Cells, Natural/drug effects , Macrophages/drug effects , Mice , Mice, Nude , Neoplasm Transplantation , Receptor, Interferon alpha-beta/metabolism , Receptors, Interferon/metabolism , Sarcoma, Ewing/immunology , Sarcoma, Ewing/metabolism , Sarcoma, Ewing/mortality , Tumor Microenvironment/immunology , Ubiquitin Thiolesterase/immunology , Ubiquitin Thiolesterase/metabolism , Up-Regulation/drug effects , Xenograft Model Antitumor Assays , Interferon gamma Receptor
13.
J Equine Vet Sci ; 96: 103294, 2021 01.
Article in English | MEDLINE | ID: mdl-33349403

ABSTRACT

A significant portion of equine lameness is localized to the stifle joint. Effective cartilage repair strategies are largely lacking, however, recent advances in surgical techniques, biomaterials, and cellular therapeutics have broadened the clinical strategies of cartilage repair. To date, no studies have been performed directly comparing neonatal and adult articular cartilage from the stifle across multiple sites. An understanding of the differences in properties between the therapeutic target cartilage (i.e., adult cartilage) as well as potential donor cartilage (i.e., neonatal cartilage) could aid in selection of optimal harvest sites within a donor joint as well as evaluation of the success of the grafted cells or tissues within the host. Given the dearth of characterization studies of the equine stifle joint, and in particular neonatal stifle cartilage, the goal of this study was to measure properties of both potential source tissue and host tissue. Articular cartilage of the distal femur and patella (P) was assessed in regards to two specific factors, age of the animal and specific site within the joint. Two age groups were considered: neonatal (<1 week) and adult (4-14 years). Cartilage samples were harvested from 17 sites across the distal femur and patella. It was hypothesized that properties would vary significantly between neonatal and adult horses as well as within age groups on a site-by-site basis. Adult thickness varied by site. With the exception of water content, there were no significant biochemical differences among sites within regions of the distal femur (condyles and trochlea) and the patella in either the adult or neonate. Neonatal cartilage had a significantly higher water content than adult. Surprisingly, biochemical measurements of cellularity did not differ significantly between neonatal and adult, however, adult cartilage had greater variance in cellularity than neonatal. Overall, there were no significant differences between neonatal and adult glycosaminoglycan content. Collagen per wet weight was found to be significantly higher in adult cartilage than neonatal when averaged across all levels. In terms of biomechanical properties, aggregate modulus varied significantly across the condyles of adult cartilage but not the neonate. Neonatal cartilage was significantly less permeable, and the Young's modulus of neonatal cartilage was significantly higher than the adult. The tensile strength did not vary in a statistically significant manner between age groups. An understanding of morphological, histological, biochemical, and biomechanical properties enhances the understanding of cartilage tissue physiology and structure-function relationships. This study revealed important differences in biomechanical and biochemical properties among the 17 sites and among the six joint regions, as well as age-related differences between neonatal and adult cartilage. These location and age-related variations are informative toward determining the donor tissue harvest site.


Subject(s)
Cartilage, Articular , Animals , Femur/diagnostic imaging , Glycosaminoglycans , Horses , Knee Joint , Stifle/surgery
14.
Cartilage ; 13(2_suppl): 672S-683S, 2021 12.
Article in English | MEDLINE | ID: mdl-32441107

ABSTRACT

OBJECTIVE: To enhance the in vitro integration of self-assembled articular cartilage to native articular cartilage using chondroitinase ABC. DESIGN: To examine the hypothesis that chondroitinase ABC (C-ABC) integration treatment (C-ABCint) would enhance integration of neocartilage of different maturity levels, this study was conducted in 2 phases. In phase I, the impact on integration of 2 treatments, TCL (TGF-ß1, C-ABC, and lysyl oxidase like 2) and C-ABCint, was examined via a 2-factor, full factorial design. In phase II, construct maturity (2 levels) and C-ABCint concentration (3 levels) were the factors in a full factorial design to determine whether the effective C-ABCint dose was dependent on neocartilage maturity level. Neocartilages formed or treated per the factors above were placed into native cartilage rings, cultured for 2 weeks, and, then, integration was studied histologically and mechanically. Prior to integration, in phase II, a set of treated constructs were also assayed to provide a baseline of properties. RESULTS: In phase I, C-ABCint and TCL treatments synergistically enhanced interface Young's modulus by 6.2-fold (P = 0.004) and increased interface tensile strength by 3.8-fold (P = 0.02) compared with control. In phase II, the interaction of the factors C-ABCint and construct maturity was significant (P = 0.0004), indicating that the effective C-ABCint dose to improve interface Young's modulus is dependent on construct maturity. Construct mechanical properties were preserved regardless of C-ABCint dose. CONCLUSIONS: Applying C-ABCint to neocartilage is an effective integration strategy with translational potential, provided its dose is calibrated appropriately based on implant maturity, that also preserves implant biomechanical properties.


Subject(s)
Cartilage, Articular , Chondrocytes , Chondroitin ABC Lyase , Tensile Strength , Tissue Engineering
15.
Clin Biomech (Bristol, Avon) ; 79: 104880, 2020 10.
Article in English | MEDLINE | ID: mdl-31676140

ABSTRACT

Diarthrodial joints, found at the ends of long bones, function to dissipate load and allow for effortless articulation. Essential to these functions are cartilages, soft hydrated tissues such as hyaline articular cartilage and the knee meniscus, as well as lubricating synovial fluid. Maintaining adequate lubrication protects cartilages from wear, but a decrease in this function leads to tissue degeneration and pathologies such as osteoarthritis. To study cartilage physiology, articular cartilage researchers have employed tribology, the study of lubrication and wear between two opposing surfaces, to characterize both native and engineered tissues. The biochemical components of synovial fluid allow it to function as an effective lubricant that exhibits shear-thinning behavior. Although tribological properties are recognized to be essential to native tissue function and a critical characteristic for translational tissue engineering, tribology is vastly understudied when compared to other mechanical properties such as compressive moduli. Further, tribometer configurations and testing modalities vary greatly across laboratories. This review aims to define commonly examined tribological characteristics and discuss the structure-function relationships of biochemical constituents known to contribute to tribological properties in native tissue, address the variations in experimental set-ups by suggesting a move toward standard testing practices, and describe how tissue-engineered cartilages may be augmented to improve their tribological properties.


Subject(s)
Cartilage, Articular/cytology , Mechanical Phenomena , Tissue Engineering/methods , Animals , Biomechanical Phenomena , Cartilage, Articular/physiology , Humans
16.
Neuroimage Clin ; 23: 101918, 2019.
Article in English | MEDLINE | ID: mdl-31491827

ABSTRACT

BACKGROUND: Accurate segmentation of MS lesions on MRI is difficult and, if performed manually, time consuming. Automatic segmentations rely strongly on the image contrast and signal-to-noise ratio. Literature examining segmentation tool performances in real-world multi-site data acquisition settings is scarce. OBJECTIVE: FLAIR2, a combination of T2-weighted and fluid attenuated inversion recovery (FLAIR) images, improves tissue contrast while suppressing CSF. We compared the use of FLAIR and FLAIR2 in LesionTOADS, OASIS and the lesion segmentation toolbox (LST) when applied to non-homogenized, multi-center 2D-imaging data. METHODS: Lesions were segmented on 47 MS patient data sets obtained from 34 sites using LesionTOADS, OASIS and LST, and compared to a semi-automatically generated reference. The performance of FLAIR and FLAIR2 was assessed using the relative lesion volume difference (LVD), Dice coefficient (DSC), sensitivity (SEN) and symmetric surface distance (SSD). Performance improvements related to lesion volumes (LVs) were evaluated for all tools. For comparison, LesionTOADS was also used to segment lesions from 3 T single-center MR data of 40 clinically isolated syndrome (CIS) patients. RESULTS: Compared to FLAIR, the use of FLAIR2 in LesionTOADS led to improvements of 31.6% (LVD), 14.0% (DSC), 25.1% (SEN), and 47.0% (SSD) in the multi-center study. DSC and SSD significantly improved for larger LVs, while LVD and SEN were enhanced independent of LV. OASIS showed little difference between FLAIR and FLAIR2, likely due to its inherent use of T2w and FLAIR. LST replicated the benefits of FLAIR2 only in part, indicating that further optimization, particularly at low LVs is needed. In the CIS study, LesionTOADS did not benefit from the use of FLAIR2 as the segmentation performance for both FLAIR and FLAIR2 was heterogeneous. CONCLUSIONS: In this real-world, multi-center experiment, FLAIR2 outperformed FLAIR in its ability to segment MS lesions with LesionTOADS. The computation of FLAIR2 enhanced lesion detection, at minimally increased computational time or cost, even retrospectively. Further work is needed to determine how LesionTOADS and other tools, such as LST, can optimally benefit from the improved FLAIR2 contrast.


Subject(s)
Image Processing, Computer-Assisted/standards , Magnetic Resonance Imaging/standards , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Neuroimaging/standards , Adult , Cohort Studies , Female , Humans , Male , Middle Aged
17.
Biotechnol J ; 14(3): e1700763, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30052320

ABSTRACT

Lysyl oxidase (LOX)-mediated collagen crosslinking can regulate osteoblastic phenotype and enhance mechanical properties of tissues, both areas of interest in bone tissue engineering. The objective of this study is to investigate the effect of lysyl oxidase-like 2 (LOXL2) on osteogenic differentiation of mesenchymal stem cells (MSCs) cultured in perfusion bioreactors, enzymatic collagen crosslink formation in the extracellular matrix (ECM), and mechanical properties of engineered bone grafts. Exogenous LOXL2 to MSCs seeded in composite scaffolds under perfusion culture for up to 28 days is administered. Constructs treated with LOXL2 appear brown in color and possess greater DNA content and osteogenic potential measured by a twofold increase in bone sialoprotein gene expression. Collagen expression of LOXL2-treated scaffolds is lower than untreated controls. Functional outputs such as calcium deposition, osteocalcin expression, and compressive modulus are unaffected by LOXL2 supplementation. Excitingly, LOXL2-treated constructs contain 1.8- and 1.4-times more pyridinoline (PYD) crosslinks per mole of collagen and per wet weight, respectively, than untreated constructs. Despite these increases, compressive moduli of LOXL2-treated constructs are similar to untreated constructs over the 28-day culture duration. This is the first report of LOXL2 application to engineered, three-dimensional bony constructs. The results suggest a potentially new strategy for engineering osteogenic grafts with a mature ECM by modulating crosslink formation.


Subject(s)
Amino Acid Oxidoreductases/metabolism , Collagen/metabolism , Osteogenesis/physiology , Amino Acids/metabolism , Cell Culture Techniques/methods , Cell Differentiation/physiology , Cells, Cultured , Extracellular Matrix/metabolism , Extracellular Matrix/physiology , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/physiology , Tissue Engineering/methods , Tissue Scaffolds
18.
Benef Microbes ; 9(3): 345-355, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29633639

ABSTRACT

Previously we showed that urine trefoil factor 3 (TFF3) levels were higher in females with irritable bowel syndrome (IBS) compared to non-IBS females. To assess if TFF3 is associated with symptoms and/or reflect alterations in gastrointestinal permeability and gut microbiota in an IBS population, we correlated stool and urine TFF3 levels with IBS symptoms, intestinal permeability, stool microbial diversity and relative abundance of predominant bacterial families and genera. We also tested the relationship of stool TFF3 to urine TFF3, and compared results based on hormone contraception use. Samples were obtained from 93 females meeting Rome III IBS criteria and completing 4-week symptom diaries. TFF3 levels were measured by ELISA. Permeability was assessed with the urine lactulose/mannitol (L/M) ratio. Stool microbiota was assessed using 16S rRNA. Stool TFF3, but not urine TFF3, was associated positively with diarrhoea and loose stool consistency. Higher stool TFF3 was also associated with lower L/M ratio and microbial diversity. Of the 20 most abundant bacterial families Mogibacteriaceae and Christensenellaceae were inversely related to stool TFF3, with only Christensenellaceae remaining significant after multiple comparison adjustment. There were no significant relationships between stool or urine TFF3 levels and other symptoms, nor between stool and urine levels. In premenopausal females, urine TFF3 levels were higher in those reporting hormone contraception. Collectively these results suggest that higher stool TFF3 levels are associated with IBS symptoms (loose/diarrhoeal stools), lower gut permeability, and altered stool bacteria composition (decreased diversity and decreased Christensenellaceae), which further suggests that TFF3 may be an important marker of host-bacteria interaction.


Subject(s)
Feces/chemistry , Gastrointestinal Microbiome , Irritable Bowel Syndrome/pathology , Microbiota , Permeability , Trefoil Factor-3/analysis , Urine/chemistry , Adult , Aged , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Enzyme-Linked Immunosorbent Assay , Female , Humans , Middle Aged , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Young Adult
19.
Annu Rev Biomed Eng ; 20: 145-170, 2018 06 04.
Article in English | MEDLINE | ID: mdl-29494214

ABSTRACT

The zygapophysial joint, a diarthrodial joint commonly referred to as the facet joint, plays a pivotal role in back pain, a condition that has been a leading cause of global disability since 1990. Along with the intervertebral disc, the facet joint supports spinal motion and aids in spinal stability. Highly susceptible to early development of osteoarthritis, the facet is responsible for a significant amount of pain in the low-back, mid-back, and neck regions. Current noninvasive treatments cannot offer long-term pain relief, while invasive treatments can relieve pain but fail to preserve joint functionality. This review presents an overview of the facet in terms of its anatomy, functional properties, problems, and current management strategies. Furthermore, this review introduces the potential for regeneration of the facet and particular engineering strategies that could be employed as a long-term treatment.


Subject(s)
Osteoarthritis/physiopathology , Regeneration , Spine/physiopathology , Zygapophyseal Joint/physiopathology , Animals , Back Pain/physiopathology , Cartilage, Articular/physiopathology , Comorbidity , Humans , Injections, Intra-Articular , Knee/anatomy & histology , Nerve Endings , Orthopedics , Scoliosis/complications , Spinal Stenosis/complications , Spine/physiology , Spondylolisthesis/complications , Synovial Membrane/pathology , Zygapophyseal Joint/anatomy & histology , Zygapophyseal Joint/surgery
20.
Tissue Eng Part C Methods ; 23(4): 243-250, 2017 04.
Article in English | MEDLINE | ID: mdl-28406755

ABSTRACT

Collagen quantification has long been relevant to biomedical research and clinical practice to characterize tissues and determine disease states. The hydroxyproline assay, while a broadly employed method of quantifying collagen, uses perchloric acid to dissolve Ehrlich's reagent. Since perchloric acid poses occupational safety hazards and high costs, in this study, a new hydroxyproline assay was developed that replaces perchloric acid with a relatively safer and cheaper alternative, hydrochloric acid (HCl). To validate this biochemical technique, first, using either acid to dissolve Ehrlich's reagent, the assays were completed for native and engineered collagenous tissues. No statistical differences were identified between the assays (p = 0.32). Subsequently, both biochemical techniques were compared to amino acid analysis, considered a proteomics gold standard. Interestingly, utilizing HCl in lieu of perchloric acid yielded greater concordance with amino acid analysis (ρc = 0.980) than did the traditional assay (ρc = 0.947); that is, the HCl-based assay more closely estimates hydroxyproline content, and, consequently, true collagen content. Thus, using Ehrlich's reagent containing HCl in the hydroxyproline assay represents an advance in both mitigating laboratory safety hazards and improving biochemical collagen quantification.


Subject(s)
Benzaldehydes/chemistry , Collagen/chemistry , Hydrochloric Acid/chemistry , Hydroxyproline/analysis , Animals , Cattle
SELECTION OF CITATIONS
SEARCH DETAIL
...