Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 272: 120951, 2022 May 05.
Article in English | MEDLINE | ID: mdl-35131620

ABSTRACT

Optical gap energy (Egap) in luminescent π-conjugated polymers presents several difficulties in its determination, particularly when using CW conventional optical spectroscopy, absorption and emission. This happens due to several physicochemical parameter's dependence. Among others, the molecular conformation, intramolecular interactions, structural defects, polymer processability and solvent interaction stand out. In addition, there is a distribution of conjugated segments along the polymeric main chains that differentiate optical absorption transition from emission processes. In other words, these processes do not necessarily occur in the same conjugated segment owing to the very efficient ratios of energy transfer or charge migration in these materials. In this work we present a systematic study of the determination of Egap for the polymer poly(thienylene-2,5-dialkoxyphenylene). We present a comparison between the solution and solid-state film, clearly showing the presence of a polymer-polymer interaction as aggregate species. The goal of this paper is to isolate and aggregate the contribution determination of each species through systematic analysis of optical spectra, as well as to obtain, even on film, the Egap of the isolated polymer which is very similar to the polymer solution at about 2.37 eV. The intersection theory and the voltammetry methods corroborate the experiment and the discussion of the results obtained.

2.
J Colloid Interface Sci ; 464: 117-25, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26609931

ABSTRACT

A molecule with a π conjugated backbone built from aromatic thiophene and dialkoxyphenylene units and substituted imidazolium groups (TPO) is designed to obtain ultra-stable single walled carbon nanotube (SWCNT) dispersion in aqueous medium. The proposed mechanism of non-covalent interaction is accompanied by individualization of SWCNT and comprises of dominant nondisruptive π-π and cation-π interaction between them and the TPO conjugated oligomer. The individualization of SWCNT and dispersibility and stability of the ultra-stable suspensions were estimated using high resolution transmission electron microscopy, UV-Visible-NIR absorption spectroscopy, Raman spectroscopy, photoluminescence and zeta potential measurement. Nuclear magnetic resonance data provides direct evidence toward possible cation-π interaction.

3.
J Chem Phys ; 139(16): 164908, 2013 Oct 28.
Article in English | MEDLINE | ID: mdl-24182080

ABSTRACT

The donor-acceptor interactions in sequential bilayer and blend films are investigated. Steady-state and time-resolved photoluminescence (PL) were measured to characterize the samples at different geometries of photoluminescence collection. At standard excitation, with the laser incidence at 45° of the normal direction of the sample surface, a band related to the aggregate states of donor molecules appears for both blend and bilayer at around 540 nm. For the PL spectra acquired from the edge of the bilayer, with the laser incidence made at normal direction of the sample surface (90° geometry), a new featureless band emission, red-shifted from donor and acceptor emission regions was observed and assigned as the emission from interfacial exciplex states. The conformational complexity coming from donor/acceptor interactions at the heterojunction interface of the bilayer is at the origin of this interfacial exciplex emission.

4.
J Phys Chem B ; 115(44): 12687-93, 2011 Nov 10.
Article in English | MEDLINE | ID: mdl-21970721

ABSTRACT

In this article, we investigate the linear and nonlinear optical properties of the thiophene/phenylene-based oligomer (SL128G) and polymer (FSE59) chemically modified with alquilic chains, which allow greater solubility and provide new optical properties. These compounds present a strong absorption in the UV-visible region, providing a wide transparence window in visible-IR, ideal for applications in nonlinear optics. Employing the Z-scan technique with femtosecond pulses, we show that these compounds exhibit considerable two-photon absorption (2PA), with two 2PA allowed states located at 650 and 800 nm for SL128G and 780 and 920 nm for FSE59. Moreover, we observe the resonance enhancement effect as the excitation wavelength approaches the lowest one-photon-allowed state. By modeling the 2PA spectra considering a four-energy-level diagram within of the sum-over-essential states approach, we obtained the spectroscopic parameters of the electronic transitions to low-energy singlet excited states. Additionally, photoluminescence excited by femtosecond and picosecond pulses were performed to confirm the order of the multiphoton process and estimate the fluorescence lifetime, respectively.

5.
Angew Chem Int Ed Engl ; 38(16): 2360-2363, 1999 Aug.
Article in English | MEDLINE | ID: mdl-10458786

ABSTRACT

A large hole in a fullerene: The addition of dioxygen to the highly reactive 1,4-diaminobutadiene moiety of 1, formed from the reaction of C(60) with a rigid diazidobutadiene, results in the very efficient formation of an open fullerene (see the space-filling model) with the largest orifice created so far on a fullerene. The opening may be large enough to allow the smallest atoms, molecules, or ions to pass through.

SELECTION OF CITATIONS
SEARCH DETAIL
...