Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 4(7): e6267, 2009 Jul 17.
Article in English | MEDLINE | ID: mdl-19609448

ABSTRACT

BACKGROUND: Rapid growth of the embryonic heart occurs by addition of progenitor cells of the second heart field to the poles of the elongating heart tube. Failure or perturbation of this process leads to congenital heart defects. In order to provide further insight into second heart field development we characterized the insertion site of a transgene expressed in the second heart field and outflow tract as the result of an integration site position effect. RESULTS: Here we show that the integration site of the A17-Myf5-nlacZ-T55 transgene lies upstream of Hes1, encoding a basic helix-loop-helix containing transcriptional repressor required for the maintenance of diverse progenitor cell populations during embryonic development. Transgene expression in a subset of Hes1 expression sites, including the CNS, pharyngeal epithelia, pericardium, limb bud and lung endoderm suggests that Hes1 is the endogenous target of regulatory elements trapped by the transgene. Hes1 is expressed in pharyngeal endoderm and mesoderm including the second heart field. Analysis of Hes1 mutant hearts at embryonic day 15.5 reveals outflow tract alignment defects including ventricular septal defects and overriding aorta. At earlier developmental stages, Hes1 mutant embryos display defects in second heart field proliferation, a reduction in cardiac neural crest cells and failure to completely extend the outflow tract. CONCLUSIONS: Hes1 is expressed in cardiac progenitor cells in the early embryo and is required for development of the arterial pole of the heart.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Heart/embryology , Homeodomain Proteins/genetics , Myocardium/metabolism , Animals , Base Sequence , Blotting, Western , Cell Proliferation , DNA Primers , In Situ Hybridization , Mice , Mice, Transgenic , Morphogenesis , Transcription Factor HES-1 , Transgenes
2.
Dev Dyn ; 237(10): 3071-8, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18816853

ABSTRACT

Vertebrate craniofacial and trunk myogenesis are regulated by distinct genetic programs. Tbx1, homologue of the del22q11.2 syndrome candidate gene TBX1, controls branchiomeric craniofacial muscle development. Here, we demonstrate using immunohistochemistry that myogenic regulatory factors are activated in Tbx1-positive cells within pharyngeal mesoderm. These cells are also Islet1 and Capsulin-positive and in the absence of Tbx1 persist in the core of the first arch. Sporadic hypoplastic mandibular muscles in Tbx1-/- embryos contain Pax7-positive myocytes with indistinguishable differentiation properties from wild-type muscles and have normal tendon attachments and fiber-type patterning. In contrast to TBX1 haploinsufficient del22q11.2 syndrome patients, no alteration in fiber-type distribution was detected in Tbx1+/- adult masseter and pharyngeal constrictor muscles. Furthermore, Tbx1-expressing limb muscles display normal patterning, differentiation, fiber-type growth, fiber-type distribution and fetal maturation in the absence of Tbx1. The critical requirement for Tbx1 during muscle development is thus in the robust onset of myogenic specification in pharyngeal mesoderm.


Subject(s)
Gene Expression Regulation, Developmental/genetics , Muscle Development , Somites/embryology , Somites/metabolism , T-Box Domain Proteins/metabolism , Animals , Embryo, Mammalian/embryology , Embryo, Mammalian/metabolism , Mice , Mice, Knockout , Muscle Development/genetics , Mutation/genetics , Stem Cells/metabolism , T-Box Domain Proteins/deficiency , T-Box Domain Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...