Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(2): e0294603, 2024.
Article in English | MEDLINE | ID: mdl-38421964

ABSTRACT

BACKGROUND: A better understanding of treatment progression and recovery in pulmonary tuberculosis (TB) infectious disease is crucial. This study analyzed longitudinal serum samples from pulmonary TB patients undergoing interventional treatment to identify surrogate markers for TB-related outcomes. METHODS: Serum that was collected at baseline and 8, 17, 26, and 52 weeks from 30 TB patients experiencing durable cure were evaluated and compared using a sensitive LC-MS/MS proteomic platform for the detection and quantification of differential host protein signatures relative to timepoint. The global proteome signature was analyzed for statistical differences across the time course and between disease severity and treatment groups. RESULTS: A total of 676 proteins showed differential expression in the serum over these timepoints relative to baseline. Comparisons to understand serum protein dynamics at 8 weeks, treatment endpoints at 17 and 26 weeks, and post-treatment at 52 weeks were performed. The largest protein abundance changes were observed at 8 weeks as the initial effects of antibiotic treatment strongly impacted inflammatory and immune modulated responses. However, the largest number of proteome changes was observed at the end of treatment time points 17 and 26 weeks respectively. Post-treatment 52-week results showed an abatement of differential proteome signatures from end of treatment, though interestingly those proteins uniquely significant at post-treatment were almost exclusively downregulated. Patients were additionally stratified based upon disease severity and compared across all timepoints, identifying 461 discriminating proteome signatures. These proteome signatures collapsed into discrete expression profiles with distinct pathways across immune activation and signaling, hemostasis, and metabolism annotations. Insulin-like growth factor (IGF) and Integrin signaling maintained a severity signature through 52 weeks, implying an intrinsic disease severity signature well into the post-treatment timeframe. CONCLUSION: Previous proteome studies have primarily focused on the 8-week timepoint in relation to culture conversion status. While this study confirms previous observations, it also highlights some differences. The inclusion of additional end of treatment and post-treatment time points offers a more comprehensive assessment of treatment progression within the serum proteome. Examining the expression dynamics at these later time periods will help in the investigation of relapse patients and has provided indicative markers of response and recovery.


Subject(s)
Proteome , Proteomics , Humans , Chromatography, Liquid , Tandem Mass Spectrometry , Blood Proteins
2.
PLoS One ; 16(5): e0250586, 2021.
Article in English | MEDLINE | ID: mdl-33951066

ABSTRACT

INTRODUCTION: Contemporary phase 2 TB disease treatment clinical trials have found that microbiologic treatment responses differ between African versus non-African regions, the reasons for which remain unclear. Understanding host and disease phenotypes that may vary by region is important for optimizing curative treatments. METHODS: We characterized clinical features and the serum proteome of phase 2 TB clinical trial participants undergoing treatment for smear positive, culture-confirmed TB, comparing host serum protein expression in clinical trial participants enrolled in African and Non-African regions. Serum samples were collected from 289 participants enrolled in the Centers for Disease Control and Prevention TBTC Study 29 (NCT00694629) at time of enrollment and at the end of the intensive phase (after 40 doses of TB treatment). RESULTS: After a peptide level proteome analysis utilizing a unique liquid chromatography IM-MS platform (LC-IM-MS) and subsequent statistical analysis, a total of 183 core proteins demonstrated significant differences at both baseline and at week 8 timepoints between participants enrolled from African and non-African regions. The majority of the differentially expressed proteins were upregulated in participants from the African region, and included acute phase proteins, mediators of inflammation, as well as coagulation and complement pathways. Downregulated proteins in the African population were primarily linked to nutritional status and lipid metabolism pathways. CONCLUSIONS: We have identified differentially expressed nutrition and lipid pathway proteins by geographic region in TB patients undergoing treatment for pulmonary tuberculosis, which appear to be associated with differential treatment responses. Future TB clinical trials should collect expanded measures of nutritional status and further evaluate the relationship between nutrition and microbiologic treatment response.


Subject(s)
Biomarkers/metabolism , Lipid Metabolism , Mycobacterium tuberculosis/drug effects , Nutritional Physiological Phenomena , Proteome/metabolism , Tuberculosis, Pulmonary/drug therapy , Adult , Female , Humans , Male , Middle Aged , Mycobacterium tuberculosis/isolation & purification , Mycobacterium tuberculosis/metabolism , North America , Proteomics/methods , South Africa , Spain , Treatment Outcome , Tuberculosis, Pulmonary/metabolism , Tuberculosis, Pulmonary/microbiology , Uganda , Young Adult
3.
Tuberculosis (Edinb) ; 112: 52-61, 2018 09.
Article in English | MEDLINE | ID: mdl-30205969

ABSTRACT

RATIONALE: The monitoring of TB treatments in clinical practice and clinical trials relies on traditional sputum-based culture status indicators at specific time points. Accurate, predictive, blood-based protein markers would provide a simpler and more informative view of patient health and response to treatment. OBJECTIVE: We utilized sensitive, high throughput multiplexed ion mobility-mass spectrometry (IM-MS) to characterize the serum proteome of TB patients at the start of and at 8 weeks of rifamycin-based treatment. We sought to identify treatment specific signatures within patients as well as correlate the proteome signatures to various clinical markers of treatment efficacy. METHODS: Serum samples were collected from 289 subjects enrolled in CDC TB Trials Consortium Study 29 at time of enrollment and at the end of the intensive phase (after 40 doses of TB treatment). Serum proteins were immunoaffinity-depleted of high abundant components, digested to peptides and analyzed for data acquisition utilizing a unique liquid chromatography IM-MS platform (LC-IM-MS). Linear mixed models were utilized to identify serum protein changes in the host response to antibiotic treatment as well as correlations with culture status end points. RESULTS: A total of 10,137 peptides corresponding to 872 proteins were identified, quantified, and used for statistical analysis across the longitudinal patient cohort. In response to TB treatment, 244 proteins were significantly altered. Pathway/network comparisons helped visualize the interconnected proteins, identifying up regulated (lipid transport, coagulation cascade, endopeptidase activity) and down regulated (acute phase) processes and pathways in addition to other cross regulated networks (inflammation, cell adhesion, extracellular matrix). Detection of possible lung injury serum proteins such as HPSE, significantly downregulated upon treatment. Analyses of microbiologic data over time identified a core set of serum proteins (TTHY, AFAM, CRP, RET4, SAA1, PGRP2) which change in response to treatment and also strongly correlate with culture status. A similar set of proteins at baseline were found to be predictive of week 6 and 8 culture status. CONCLUSION: A comprehensive host serum protein dataset reflective of TB treatment effect is defined. A repeating set of serum proteins (TTHY, AFAM, CRP, RET4, SAA1, PGRP2, among others) were found to change significantly in response to treatment, to strongly correlate with culture status, and at baseline to be predictive of future culture conversion. If validated in cohorts with long term follow-up to capture failure and relapse of TB, these protein markers could be developed for monitoring of treatment in clinical trials and in patient care.


Subject(s)
Antitubercular Agents/therapeutic use , Blood Proteins/metabolism , Ion Mobility Spectrometry , Mass Spectrometry , Proteomics/methods , Tuberculosis, Pulmonary/drug therapy , Adolescent , Adult , Biomarkers/blood , Child , Child, Preschool , Chromatography, Liquid , Drug Therapy, Combination , Female , High-Throughput Screening Assays , Host-Pathogen Interactions , Humans , Infant , Infant, Newborn , Male , Middle Aged , North America , Predictive Value of Tests , Prospective Studies , Protein Interaction Maps , South Africa , Spain , Time Factors , Treatment Outcome , Tuberculosis, Pulmonary/blood , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/microbiology , Uganda , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...