Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 26(25): 32554-32564, 2018 Dec 10.
Article in English | MEDLINE | ID: mdl-30645420

ABSTRACT

Surface or edge states represent an important class of modes in various photonic crystal systems such as in dielectric topological insulators and in photonic crystal fibers. In the later, strong attenuation peaks in the transmission spectrum are attributed to coupling between surface and core-guided modes. Here, we explore a modified implementation of the spatial and spectral interference method to experimentally characterize surface modes in photonic crystal fibers. Using an external reference and a non-uniform Fourier transform windowing, the obtained spectrogram allows clear observation of anti-crossing behavior at wavelengths in which surface and core modes are strongly coupled. We also detect surface modes with different spatial symmetries, and give insight into mode families couple to the fundamental or high-order core modes, as well as the existence of uncoupled surface modes.

2.
Opt Express ; 20(17): 18772-83, 2012 Aug 13.
Article in English | MEDLINE | ID: mdl-23038517

ABSTRACT

We have fabricated thin erbium-doped amorphous silicon sub-oxide (a-SiOx) photonic crystal membrane using focused gallium ion beam (FIB). The photonic crystal is composed of a hexagonal lattice with a H1 defect supporting two quasi-doubly degenerate second order dipole states. 2-D simulation was used for the design of the structure and full 3-D FDTD (Finite-Difference Time-Domain) numerical simulations were performed for a complete analysis of the structure. The simulation predicted a quality factor for the structure of Q = 350 with a spontaneous emission enhancement of 7. Micro photoluminescence measurements showed an integrated emission intensity enhancement of ~2 times with a Q = 130. We show that the discrepancy between simulation and measurement is due to the conical shape of the photonic crystal holes and the optical losses induced by FIB milling.


Subject(s)
Heavy Ions , Membranes, Artificial , Silicon Dioxide/chemistry , Transducers , Crystallization , Gallium , Materials Testing
SELECTION OF CITATIONS
SEARCH DETAIL
...