Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Synchrotron Radiat ; 5(Pt 6): 1390-5, 1998 Nov 01.
Article in English | MEDLINE | ID: mdl-16687853

ABSTRACT

X-ray fluorescence microscopy and microspectroscopy with micrometre spatial resolution and unprecedented capabilities for the study of biological and environmental samples are reported. These new capabilities are a result of both the combination of high-brilliance synchrotron radiation and high-performance X-ray microfocusing optics and the intrinsic advantages of X-rays for elemental mapping and chemical-state imaging. In this paper, these capabilities are illustrated by experimental results on hard X-ray phase-contrast imaging, X-ray fluorescence (XRF) imaging and microspectroscopy of mycorrhizal plant roots and fungi in their natural hydrated state. The XRF microprobe is demonstrated by the simultaneous mapping of the elemental distributions of P, S, K, Ca, Mn, Fe, Ni, Cu and Zn with a spatial resolution of approximately 1 x 3 micron and with an elemental sensitivity of approximately 500 p.p.b. Microspectroscopy with the same spatial resolution is demonstrated by recording near-edge X-ray absorption (XANES) spectra of Mn at a concentration of approximately 3 p.p.m.

2.
Mycorrhiza ; 7(5): 237-42, 1998 Feb.
Article in English | MEDLINE | ID: mdl-24578048

ABSTRACT

Applications of high levels of MgSO4 resulted in reduced root colonization and sporulation by Glomus sp. (INVAM isolate FL329) with sweet potato and onion in aeroponic and sand culture, respectively. Onion shoot-Mg concentrations were elevated when a nutrient solution containing 2.6 or 11.7 mM MgSO4 was applied. Magnesium application depressed tissue-Ca levels. With lower Ca in the tissue, colonization was reduced from > 30% of root length to < 10%, and sporulation from > 1200 to ca. 200 spores per plant, 10 weeks after transplantation and the start of nutrient application. These effects on colonization and sporulation were independent of changes in tissue-P concentration. High Mg/low Ca tissue concentrations induced premature root senescence, which may have disrupted the mycorrhizal association. Our results confirm the importance of Ca for the maintenance of a functioning mycorrhiza.

3.
Appl Environ Microbiol ; 58(1): 229-32, 1992 Jan.
Article in English | MEDLINE | ID: mdl-16348622

ABSTRACT

For efficient handling, vesicular-arbuscular mycorrhizal fungi should be processed into small and uniform inocula; however, processing can reduce the inoculum density. In this article we describe the preparation and use of sheared-root inocula of Glomus spp. in which inoculum densities were increased during processing. Our objectives were to determine inoculum viability and density after shearing and to ascertain if the sheared inocula could be pelletized or used with a gel carrier. Root samples were harvested from aeroponic cultures, blotted dry, cut into 1-cm lengths, and sheared in a food processor for up to 80 s. After shearing, the inoculum was washed over sieves, and the propagule density in each fraction was determined. Sheared inocula were also encapsulated in carrageenan or used in a gel carrier. Shearing aeroponically produced root inocula reduced particle size. Propagule density increased with decreasing size fraction down to a size of 63 mum, after which propagule density decreased. The weighted-average propagule density of the inoculum was 135,380 propagules g (dry weight) of sheared root material. Sheared roots were encapsulated successfully in carrageenan, and the gel served as an effective carrier. Aeroponic root inoculum was stored dry at 4 degrees C for 23 months without significant reduction in propagule density; however, this material was not appropriate for shearing. Moist roots, useful for shearing, began to lose propagule density after 1 month of storage. Shearing proved to be an excellent method to prepare viable root inocula of small and uniform size, allowing for more efficient and effective use of limited inoculum supplies.

SELECTION OF CITATIONS
SEARCH DETAIL