Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Commun Biol ; 7(1): 272, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443511

ABSTRACT

Mycoprotein is a fungal-derived ingredient used for meat alternative products whose fungal cell walls are rich in dietary fibre (ß-glucans and chitin) and defines its structure. Several health benefits have been reported after mycoprotein consumption, however, little is known about the impact of mycoprotein fermentation on the gut microbiota. This study aims to identify changes in microbiome composition and microbial metabolites during colonic fermentation of mycoprotein following simulated upper gastrointestinal digestion. Changes in microbial populations and metabolites produced by the fermentation of mycoprotein fibre were investigated and compared to a plant (oat bran) and an animal (chicken) comparator. In this model fermentation system, mycoprotein and oat showed different but marked changes in the microbial population compared to chicken, which showed minimal differentiation. In particular, Bacteroides species known for degrading ß-glucans were found in abundance following fermentation of mycoprotein fibre. Mycoprotein fermentation resulted in short-chain fatty acid production comparable with oat and chicken at 72 h. Significantly higher branched-chain amino acids were observed following chicken fermentation. This study suggests that the colonic fermentation of mycoprotein can promote changes in the colonic microbial profile. These results highlight the impact that the unique structure of mycoprotein can have on digestive processes and the gut microbiota.


Subject(s)
Gastrointestinal Microbiome , Microbiota , beta-Glucans , Animals , Bacteroides , Fermentation , Chickens
2.
MCN Am J Matern Child Nurs ; 49(2): 81-87, 2024.
Article in English | MEDLINE | ID: mdl-38112631

ABSTRACT

ABSTRACT: Perinatal loss, the tragic event of losing a baby before, during, or shortly after birth, is a profoundly distressing experience for any family. We focus on the unique challenges faced by diverse families, encompassing those from underrepresented racial, ethnic, religious, and LGBTQ+ backgrounds. Diverse families often encounter inadequate support, misunderstandings, and even mistreatment during their perinatal loss journeys due to cultural insensitivity and biases. This review underscores the necessity of a trauma-informed, person-centered approach to perinatal bereavement care that respects the diversity of those affected. We emphasize the importance of understanding various cultural perspectives on grief and mortality to provide appropriate and empathetic care.Our core purpose is to elucidate the challenges confronting diverse families dealing with perinatal loss and to offer actionable strategies for health care providers. By addressing these unique challenges, nurses and other health care professionals can offer culturally sensitive, person-centered support during this distressing time. This review can serve as a resource for nurses and other health care providers, enabling them to provide personalized, culturally sensitive care to diverse families experiencing perinatal loss through a trauma-informed lens. Recognizing and addressing these distinctive needs fosters healing and ensures that nurses and other health care providers are better equipped to guide families through the challenging journey of perinatal bereavement.


Subject(s)
Bereavement , Sexual and Gender Minorities , Female , Humans , Pregnancy , Gender Identity , Grief , Parturition , Male
3.
Foods ; 12(9)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37174299

ABSTRACT

Patients with chronic pancreatitis (CP) are particularly vulnerable to nutrient malabsorption and undernutrition caused by the underlying pathology of their disease. Dietary intervention trials involving soy isoflavones in patients with CP are limited and isoflavone metabolites have not yet been reported. We hypothesized soy bread containing plant-based protein, dietary fiber, and isoflavones would be well-tolerated and restore gut functional capacity which would lead to isoflavone metabolites profiles like those of healthy populations. Participants (n = 9) received 1 week of soy bread in a dose-escalation design (1 to 3 slices/day) or a 4-week maximally tolerated dose (n = 1). Dietary adherence, satiety, and palatability were measured. Isoflavone metabolites from 24 h urine collections were quantified using high-performance liquid chromatography. A maximum dose of three slices (99 mg of isoflavones) of soy bread per day was achieved. Short-term exposure to soy bread showed a significant dose-response increase (p = 0.007) of total isoflavones and their metabolites in urine. With increasing slices of soy bread, dietary animal protein intake (p = 0.009) and perceived thirst (p < 0.001) significantly decreased with prolonged satiety (p < 0.001). In this study, adherence to short-term intervention with soy bread in CP patients was excellent. Soy isoflavones were reliably delivered. These findings provide the foundation for evaluating a well-characterized soy bread in supporting healthy nutrition and gut function in CP.

4.
Am J Clin Nutr ; 117(3): 477-489, 2023 03.
Article in English | MEDLINE | ID: mdl-36811474

ABSTRACT

BACKGROUND: Dietary intake of pulses is associated with beneficial effects on body weight management and cardiometabolic health, but some of these effects are now known to depend on integrity of plant cells, which are usually disrupted by flour milling. Novel cellular flours preserve the intrinsic dietary fiber structure of whole pulses and provide a way to enrich preprocessed foods with encapsulated macronutrients. OBJECTIVES: This study aimed to determine the effects of replacing wheat flour with cellular chickpea flour on postprandial gut hormones, glucose, insulin, and satiety responses to white bread. METHODS: We conducted a double-blind randomized crossover study in which postprandial blood samples and scores were collected from healthy human participants (n = 20) after they consumed bread enriched with 0%, 30%, or 60% (wt/wt) cellular chickpea powder (CCP, 50 g total starch per serving). RESULTS: Bread type significantly affected postprandial glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) responses (time × treatment, P = 0.001 for both). The 60% CCP breads elicited significantly elevated and sustained release of these anorexigenic hormones [between 0% and 60% CPP-GLP-1: mean difference incremental area under the curve (iAUC), 3101 pM/min; 95% CI: 1891, 4310; P-adjusted < 0.001; PYY: mean difference iAUC, 3576 pM/min; 95% CI: 1024, 6128; P-adjusted = 0.006] and tended to increase fullness (time × treatment, P = 0.053). Moreover, bread type significantly influenced glycemia and insulinemia (time × treatment, P < 0.001, P = 0.006, and P = 0.001 for glucose, insulin, and C-peptide, respectively), with 30% CCP breads eliciting a >40% lower glucose iAUC (P-adjusted < 0.001) than the 0% CCP bread. Our in vitro studies revealed slow digestion of intact chickpea cells and provide a mechanistic explanation for the physiologic effects. CONCLUSIONS: The novel use of intact chickpea cells to replace refined flours in a white bread stimulates an anorexigenic gut hormone response and has potential to improve dietary strategies for prevention and treatment of cardiometabolic diseases. This study was registered at clinicaltrials.gov as NCT03994276.


Subject(s)
Cardiovascular Diseases , Cicer , Gastrointestinal Hormones , Humans , Bread , Flour , Cross-Over Studies , Blood Glucose , Triticum/chemistry , Glucose , Glucagon-Like Peptide 1 , Insulin , Peptide YY , Postprandial Period
5.
J Investig Med ; 71(4): 329-338, 2023 04.
Article in English | MEDLINE | ID: mdl-36695422

ABSTRACT

Vaccination efforts have limited the burden of the pandemic caused by the coronavirus disease 2019 (COVID-19) with substantial evidence showing reduced hospitalization rates among vaccinated populations. However, few studies have explored correlations between vaccination status and inpatient COVID-19 outcomes. This observational case-control study involved a retrospective chart review of adult patients hospitalized for COVID-19 infection at a medium-sized hospital in Central Michigan between May 1, 2021 and September 30, 2021. Unadjusted analyses involved t-tests and chi-square tests followed by adjusted analyses using binary logistic and linear regression models. Of the 192 screened patients, 171 subjects met the inclusion criteria. Vaccinated patients were significantly older (71.09 vs 57.45, p < 0.001), more likely to identify as white (89.4% vs 66.9%, p = 0.026), and had a lower baseline 10-year survival rate predicted by the Charlson Comorbidity Index (42% vs 69%, p < 0.001) compared to unvaccinated patients. Common symptoms between both groups included shortness of breath (50%), malaise (23%-37%), cough (28%-32%), and fever or chills (25%). Upon matching, adjusted analysis showed significantly higher rates of remdesivir administration to unvaccinated patients (41.3% vs 13.3%, odds ratio (OR): 4.63, 90% confidence interval (CI): 1.98-11.31). Despite higher intensive care unit admission rates among unvaccinated patients (39.1% vs 23.9%, OR: 1.83, 90% CI: 0.74-4.64), this difference did not reach statistical significance. Accordingly, immunization status strongly correlates with patient demographics and differences in inpatient treatment. Larger studies are needed to further assess the vaccine's impact on inpatient outcomes outside of our community.


Subject(s)
COVID-19 , Adult , Humans , Case-Control Studies , Retrospective Studies , Inpatients , Dyspnea
6.
Foods ; 12(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36673358

ABSTRACT

Breeding for less digestible starch in wheat can improve the health impact of bread and other wheat foods. The application of forward genetic approaches has lately opened opportunities for the discovery of new genes that influence the digestibility of starch, without the burden of detrimental effects on yield or on pasta and bread-making quality. In this study we developed a high-throughput in vitro starch digestibility assay (HTA) for use in forward genetic approaches to screen wheat germplasm. The HTA was validated using standard maize and wheat starches. Using the HTA we measured starch digestibility in hydrothermally processed flour samples and found wide variation among 118 wheat landraces from the A. E. Watkins collection and among eight elite UK varieties (23.5 to 39.9% and 31.2 to 43.5% starch digested after 90 min, respectively). We further investigated starch digestibility in fractions of sieved wholemeal flour and purified starch in a subset of the Watkins lines and elite varieties and found that the matrix properties of flour rather than the intrinsic properties of starch granules conferred lower starch digestibility.

7.
Antibiotics (Basel) ; 13(1)2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38275315

ABSTRACT

Chronic osteomyelitis in adults is managed with prolonged courses of intravenous antibiotics in conjunction with surgical debridement of necrotic bone. Over the past 40 years, there has been no paradigm shift in this approach, as randomized controlled trials of this standard of care compared to alternatives such as prolonged oral antibiotics are scarce. However, there have been many small trials, case reports, and review papers evaluating the effectiveness of oral treatment for chronic osteomyelitis. The oral route for infections requiring prolonged treatment is intuitively and practically more favorable due to several advantages, the most important of which is the avoidance of long-term IV antimicrobial therapy with its complications, inconvenience, and cost. In this paper, we review the literature evaluating oral antibiotic therapy in the management of chronic bone infections since 1975. The majority of osteomyelitis infections are caused by Staphylococcus aureus, hence we focus on its treatment using oral antibiotics; however, we also emphasize subpopulations of patients with diabetes, implanted hardware, and with less common bacterial organisms. The primary objective of this review is to promulgate clinical recommendations on the use of oral antibiotics in bone infections in the context of initial therapy, transition from intravenous therapy, and the role of chronic suppression. The secondary objective is to summarize current knowledge of the specific oral antimicrobial agents that are commonly utilized, together with a synopsis of the available literature pertaining to their pharmacokinetic/pharmacodynamic properties and duration of therapy in bone infection.

8.
Antibiotics (Basel) ; 11(12)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36551500

ABSTRACT

Bacterial central nervous system (CNS) infections are serious and carry significant morbidity and mortality. They encompass many syndromes, the most common being meningitis, which may occur spontaneously or as a consequence of neurosurgical procedures. Many classes of antimicrobials are in clinical use for therapy of CNS infections, some with established roles and indications, others with experimental reporting based on case studies or small series. This review delves into the specifics of the commonly utilized antibacterial agents, updating their therapeutic use in CNS infections from the pharmacokinetic and pharmacodynamic perspectives, with a focus on the optimization of dosing and route of administration that have been described to achieve good clinical outcomes. We also provide a concise synopsis regarding the most focused, clinically relevant information as pertains to each class and subclass of antimicrobial therapeutics. CNS infection morbidity and mortality remain high, and aggressive management is critical in ensuring favorable patient outcomes while averting toxicity and upholding patient safety.

9.
Commun Biol ; 5(1): 932, 2022 09 08.
Article in English | MEDLINE | ID: mdl-36076058

ABSTRACT

Complex carbohydrates that escape small intestinal digestion, are broken down in the large intestine by enzymes encoded by the gut microbiome. This is a symbiotic relationship between microbes and host, resulting in metabolic products that influence host health and are exploited by other microbes. However, the role of carbohydrate structure in directing microbiota community composition and the succession of carbohydrate-degrading microbes, is not fully understood. In this study we evaluate species-level compositional variation within a single microbiome in response to six structurally distinct carbohydrates in a controlled model gut using hybrid metagenome assemblies. We identified 509 high-quality metagenome-assembled genomes (MAGs) belonging to ten bacterial classes and 28 bacterial families. Bacterial species identified as carrying genes encoding starch binding modules increased in abundance in response to starches. The use of hybrid metagenomics has allowed identification of several uncultured species with the functional potential to degrade starch substrates for future study.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Bacteria/genetics , Bacteria/metabolism , Gastrointestinal Microbiome/genetics , Humans , Metagenome , Metagenomics , Starch/metabolism
10.
Commun Biol ; 5(1): 526, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35650336

ABSTRACT

Life underground has constrained the evolution of subterranean mammals to maximize digging performance. However, the mechanisms modulating morphological change and development of fossorial adaptations in such taxa are still poorly known. We assessed the morpho-functional diversity and early postnatal development of fossorial adaptations (bone superstructures) in the appendicular system of the African mole-rats (Bathyergidae), a highly specialized subterranean rodent family. Although bathyergids can use claws or incisors for digging, all genera presented highly specialized bone superstructures associated with scratch-digging behavior. Surprisingly, Heterocephalus glaber differed substantially from other bathyergids, and from fossorial mammals by possessing a less specialized humerus, tibia and fibula. Our data suggest strong functional and developmental constraints driving the selection of limb specializations in most bathyergids, but more relaxed pressures acting on the limbs of H. glaber. A combination of historical, developmental and ecological factors in Heterocephalus are hypothesized to have played important roles in shaping its appendicular phenotype.


Subject(s)
Acclimatization , Mole Rats , Adaptation, Physiological , Animals , Phenotype
11.
Sci Rep ; 12(1): 10806, 2022 06 25.
Article in English | MEDLINE | ID: mdl-35752653

ABSTRACT

Starch synthase III plays a key role in starch biosynthesis and is highly expressed in developing wheat grains. To understand the contribution of SSIII to starch and grain properties, we developed wheat ssIIIa mutants in the elite cultivar Cadenza using in silico TILLING in a mutagenized population. SSIIIa protein was undetectable by immunoblot analysis in triple ssIIIa mutants carrying mutations in each homoeologous copy of ssIIIa (A, B and D). Loss of SSIIIa in triple mutants led to significant changes in starch phenotype including smaller A-type granules and altered granule morphology. Starch chain-length distributions of double and triple mutants indicated greater levels of amylose than sibling controls (33.8% of starch in triple mutants, and 29.3% in double mutants vs. 25.5% in sibling controls) and fewer long amylopectin chains. Wholemeal flour of triple mutants had more resistant starch (6.0% vs. 2.9% in sibling controls) and greater levels of non-starch polysaccharides; the grains appeared shrunken and weighed ~ 11% less than the sibling control which was partially explained by loss in starch content. Interestingly, our study revealed gene dosage effects which could be useful for fine-tuning starch properties in wheat breeding applications while minimizing impact on grain weight and quality.


Subject(s)
Starch Synthase , Amylopectin/metabolism , Bread , Edible Grain/genetics , Edible Grain/metabolism , Molecular Structure , Plant Breeding , Starch/metabolism , Starch Synthase/metabolism , Triticum/metabolism
12.
Food Funct ; 13(3): 1617-1627, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35079762

ABSTRACT

High-amylose starch branching enzyme II (sbeII) mutant wheat has potential to be low-glycaemic compared to conventional wheat; however, the effects of bread made from sbeII wheat flour on glycaemic response and product quality require investigation. We report the impact of white bread made from sbeII wheat flour on in vitro starch digestibility and product quality, and on postprandial glycaemia in vivo, compared to an isoglucidic wild-type (WT) control white bread. Starch in sbeII bread was ∼20% less susceptible to in vitro amylolysis leading to ∼15% lower glycaemic response measured in vivo, compared to the WT control bread, without major effects on bread appearance or texture, measured instrumentally. Despite the early termination of the in vivo intervention study due to the COVID-19 outbreak (n = 8 out of 19), results from this study indicate that sbeII wheat produces bread with lower starch digestibility than conventional white bread.


Subject(s)
1,4-alpha-Glucan Branching Enzyme/metabolism , Amylose/metabolism , Bread , Digestion , Functional Food , Triticum , Adult , Blood Glucose , Cross-Over Studies , Double-Blind Method , Female , Glycemic Index , Humans , Male , Postprandial Period , Satiation
13.
Biol Rev Camb Philos Soc ; 97(1): 115-140, 2022 02.
Article in English | MEDLINE | ID: mdl-34476892

ABSTRACT

The naked mole-rat (Heterocephalus glaber) has fascinated zoologists for at least half a century. It has also generated considerable biomedical interest not only because of its extraordinary longevity, but also because of unusual protective features (e.g. its tolerance of variable oxygen availability), which may be pertinent to several human disease states, including ischemia/reperfusion injury and neurodegeneration. A recent article entitled 'Surprisingly long survival of premature conclusions about naked mole-rat biology' described 28 'myths' which, those authors claimed, are a 'perpetuation of beautiful, but falsified, hypotheses' and impede our understanding of this enigmatic mammal. Here, we re-examine each of these 'myths' based on evidence published in the scientific literature. Following Braude et al., we argue that these 'myths' fall into four main categories: (i) 'myths' that would be better described as oversimplifications, some of which persist solely in the popular press; (ii) 'myths' that are based on incomplete understanding, where more evidence is clearly needed; (iii) 'myths' where the accumulation of evidence over the years has led to a revision in interpretation, but where there is no significant disagreement among scientists currently working in the field; (iv) 'myths' where there is a genuine difference in opinion among active researchers, based on alternative interpretations of the available evidence. The term 'myth' is particularly inappropriate when applied to competing, evidence-based hypotheses, which form part of the normal evolution of scientific knowledge. Here, we provide a comprehensive critical review of naked mole-rat biology and attempt to clarify some of these misconceptions.


Subject(s)
Longevity , Mole Rats , Animals , Biology
14.
Food Hydrocoll ; 114: 106565, 2021 May.
Article in English | MEDLINE | ID: mdl-33941996

ABSTRACT

The global rise in obesity and type 2 diabetes has generated significant interest in regulating the glycaemic impact of staple foods. Wheat breads (white or wholemeal) are popular staples, but have a high-glycaemic index, due to the highly digestible wheat starch. Reducing the glycaemic potency of white bread is challenging because the bread-making conditions are mostly conducive to starch gelatinisation. Cellular legume powders are a new source of type 1 resistant starch, where the starch is encapsulated by dietary fibre in the form of intact plant cell walls. The starch in these cell powders is less susceptible to gelatinisation and digestion than starch in conventional legume flours. However, legume cell resilience to baking conditions and the effects of this ingredient on glycaemic responses and product quality are unknown. Here we show that the integrity of cell wall fibre in chickpea powder was preserved on baking and this led to a ~40% reduction in in vivo glycaemic responses (iAUC120) to white bread rolls (~50 g available carbohydrate and 12 g wheat protein per serving) when 30% or 60% (w/w) of the wheat flour was replaced with intact cell powder. Significant reductions in glycaemic responses were achieved without adverse effects on bread texture, appearance or palatability. Starch digestibility analysis and microscopy confirmed the importance of cell integrity in attenuating glycaemic responses. Alternative processing methods that preserve cell integrity are a new, promising way to provide healthier low glycaemic staple foods; we anticipate that this will improve dietary options for diabetes care.

15.
Polymers (Basel) ; 13(6)2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33808830

ABSTRACT

Water quality parameters such as salt content and various pH environments can alter the stability of gels as well as their rheological properties. Here, we investigated the effect of various concentrations of NaCl and different pH environments on the rheological properties of TEMPO-oxidised cellulose nanofibril (OCNF) and starch-based hydrogels. Addition of NaCl caused an increased stiffness of the OCNF:starch (1:1 wt%) blend gels, where salt played an important role in reducing the repulsive OCNF fibrillar interactions. The rheological properties of these hydrogels were unchanged at pH 5.0 to 9.0. However, at lower pH (4.0), the stiffness and viscosity of the OCNF and OCNF:starch gels appeared to increase due to proton-induced fibrillar interactions. In contrast, at higher pH (11.5), syneresis was observed due to the formation of denser and aggregated gel networks. Interactions as well as aggregation behaviour of these hydrogels were explored via ζ-potential measurements. Furthermore, the nanostructure of the OCNF gels was probed using small-angle X-ray scattering (SAXS), where the SAXS patterns showed an increase of slope in the low-q region with increasing salt concentration arising from aggregation due to the screening of the surface charge of the fibrils.

16.
New Phytol ; 230(6): 2371-2386, 2021 06.
Article in English | MEDLINE | ID: mdl-33714222

ABSTRACT

Starch granule initiation is poorly understood at the molecular level. The glucosyltransferase, STARCH SYNTHASE 4 (SS4), plays a central role in granule initiation in Arabidopsis leaves, but its function in cereal endosperms is unknown. We investigated the role of SS4 in wheat, which has a distinct spatiotemporal pattern of granule initiation during grain development. We generated TILLING mutants in tetraploid wheat (Triticum turgidum) that are defective in both SS4 homoeologs. The morphology of endosperm starch was examined in developing and mature grains. SS4 deficiency led to severe alterations in endosperm starch granule morphology. During early grain development, while the wild-type initiated single 'A-type' granules per amyloplast, most amyloplasts in the mutant formed compound granules due to multiple initiations. This phenotype was similar to mutants deficient in B-GRANULE CONTENT 1 (BGC1). SS4 deficiency also reduced starch content in leaves and pollen grains. We propose that SS4 and BGC1 are required for the proper control of granule initiation during early grain development that leads to a single A-type granule per amyloplast. The absence of either protein results in a variable number of initiations per amyloplast and compound granule formation.


Subject(s)
Starch Synthase , Endosperm/genetics , Plant Proteins/genetics , Plastids/genetics , Starch , Starch Synthase/genetics , Triticum/genetics
17.
Am J Clin Nutr ; 112(3): 595-602, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32619212

ABSTRACT

BACKGROUND: Wheat bran, nopal, and psyllium are examples of particulate, viscous and particulate, and viscous fibers, respectively, with laxative properties yet contrasting fermentability. OBJECTIVES: We assessed the fermentability of these fibers in vitro and their effects on intestinal function relevant to laxation in vivo using MRI. METHODS: Each fiber was predigested prior to measuring gas production in vitro during 48-h anaerobic incubation with healthy fecal samples. We performed a randomized, 3-way crossover trial in 14 healthy volunteers who ingested 7.5 g fiber twice on the day prior to study initiation and once with the study test meal. Serial MRI scans obtained after fasting and hourly for 4 h following meal ingestion were used to assess small bowel water content (SBWC), colonic volumes, and T1 of the ascending colon (T1AC) as measures of colonic water. Breath samples for hydrogen analysis were obtained while patients were in the fasted state and every 30 min for 4 h following meal ingestion. RESULTS: In vitro, the onset of gas production was significantly delayed with psyllium (mean ± SD: 14 ± 5 h) compared with wheat bran (6 ± 2 h, P = 0.003) and was associated with a smaller total gas volume (P = 0.01). Prefeeding all 3 fibers for 24 h was associated with an increased fasting T1AC (>75% of values >90th centile of the normal range). There was a further rise during the 4 h after psyllium (0.3 ± 0.3 s P = 0.009), a fall with wheat bran (-0.2 ± 0.2 s; P = 0.02), but no change with nopal (0.0 ± 0.1 s, P = 0.2). SBWC increased for all fibers; nopal stimulated more water than wheat bran [AUC mean (95% CI) difference: 7.1 (0.6, 13.8) L/min, P = 0.03].Breath hydrogen rose significantly after wheat bran and nopal but not after psyllium (P < 0.0001). CONCLUSION: Both viscous and particulate fibers are equally effective at increasing colonic T1 over a period of 24 h. Mechanisms include water trapping in the small bowel by viscous fibers and delivery of substrates to the colonic microbiota by more fermentable particulate fiber. This trial was registered at clinicaltrials.gov as NCT03263065.


Subject(s)
Colon/physiology , Dietary Fiber/analysis , Dietary Fiber/metabolism , Cross-Over Studies , Female , Fermentation , Humans , Magnetic Resonance Imaging , Male , Psyllium/chemistry , Water , Young Adult
18.
Pancreatology ; 20(5): 852-859, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32595109

ABSTRACT

INTRODUCTION: Chronic pancreatitis is a chronic inflammatory disease, which progresses to fibrosis. Currently there are no interventions to delay or stop the progression to irreversible organ damage. In this study, we assessed the tolerability and feasibility of administering soy bread to reduce circulating inflammatory mediators. METHODS: Subjects with chronic pancreatitis diagnosed using the American Pancreatic Association diagnostic guidelines were enrolled. During the dose escalation (DE) phase, subjects received one week of soy bread based using a 3 + 3 dose-escalation design, which was then followed by a maximally tolerated dose (MTD) phase with four weeks of intervention. Dose-limiting toxicities (DLTs) were monitored. Plasma cytokine levels were measured using a Meso Scale Discovery multiplex assay kit. Isoflavonoid excretion in 24-h urine collection was used to measure soy bread compliance. RESULTS: Nine subjects completed the DE phase, and one subject completed the MTD phase without any DLTs at a maximum dosage of three slices (99 mg of isoflavones) per day. Reported compliance to soy bread intervention was 98%, and this was confirmed with urinary isoflavones and their metabolites detected in all subjects. There was a significant decline in the TNF-α level during the DE phase (2.667 vs 2.382 pg/mL, p = 0.039); other levels were similar. CONCLUSIONS: In this feasibility study, there was excellent compliance with a short-term intervention using soy bread in chronic pancreatitis. Reduction was seen in at least one pro-inflammatory cytokine with short-term intervention. Larger cohorts and longer interventions with soy are warranted to assess the efficacy of reducing pro-inflammatory mediators of disease.


Subject(s)
Bread , Glycine max , Pancreatitis, Chronic/diet therapy , Pancreatitis, Chronic/pathology , Aged , Cytokines/blood , Dose-Response Relationship, Drug , Feasibility Studies , Female , Humans , Inflammation/diet therapy , Inflammation/pathology , Inflammation Mediators/blood , Isoflavones/urine , Male , Middle Aged , Patient Compliance , Pilot Projects , Tumor Necrosis Factor-alpha/blood
19.
Monogr Oral Sci ; 28: 134-147, 2020.
Article in English | MEDLINE | ID: mdl-31940641

ABSTRACT

An individual's oral health status has a profound impact on his/her acquisition and utilization of nutrients and interchangeably the nutrients an individual consumes determine the state of oral health by preventing tooth loss and oral diseases. Oral diseases have a considerable impact on the masticatory function which is a critical first step in oral processing of food materials for nutrient procurement. Specifically, a section of this chapter is dedicated to the physiology of masticatory function and to the recent acknowledgement of its influence on memory and cognition, both during development and aging. A description of the occlusal and skeletal pathologies that affect the balance of the chewing pattern and related muscular activation is provided. Intact neurocognitive functions and dentition are essential in mastication to achieve coordinated movements of the teeth and tongue to help propel the food material for ingestion and subsequent nutrient absorption. The tongue is equipped with chemoreceptive, gustatory cells, which modulate taste perception and contain metabolic hormones mediating satiety. Concomitantly, salivary processes, which are stimulated with the anticipation of food ingestion and those which occur during mastication of the food material, initiate digestive enzymes in the mouth and stomach and are important in affecting appetite and food bioavailability. Therefore, oral structures such as the dentition, tongue, and saliva in the context of mastication and nutrient acquisition will be reviewed as well as their impact on food choice and subsequent nutritional status.


Subject(s)
Mastication , Oral Health , Diet , Female , Male , Taste Perception
20.
Antioxidants (Basel) ; 8(7)2019 Jun 29.
Article in English | MEDLINE | ID: mdl-31261915

ABSTRACT

Flavonoids, one of the most abundant phytochemicals in a diet rich in fruits and vegetables, have been recognized as possessing anti-proliferative, antioxidant, anti-inflammatory, and estrogenic activities. Numerous cellular and animal-based studies show that flavonoids can function as antioxidants by preventing DNA damage and scavenging reactive oxygen radicals, inhibiting formation of DNA adducts, enhancing DNA repair, interfering with chemical damage by induction of Phase II enzymes, and modifying signaling pathways. Recent evidence also shows their ability to regulate the immune system. However, findings from clinical trials have been mixed with no clear consensus on dose, frequency, or type of flavonoids best suited to elicit many of the beneficial effects. Delivery of these bioactive compounds to their biological targets through "targeted designed" food processing strategies is critical to reach effective concentration in vivo. Thus, the identification of novel approaches that optimize flavonoid bioavailability is essential for their successful clinical application. In this review, we discuss the relevance of increasing flavonoid bioavailability, by agricultural engineering and "targeted food design" in the context of the immune system and cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...