Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 16(8): 19936-59, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-26307976

ABSTRACT

A major challenge in molecular investigations at surfaces has been to image individual molecules, and the assemblies they form, with single-bond resolution. Scanning probe microscopy, with its exceptionally high resolution, is ideally suited to this goal. With the introduction of methods exploiting molecularly-terminated tips, where the apex of the probe is, for example, terminated with a single CO, Xe or H2 molecule, scanning probe methods can now achieve higher resolution than ever before. In this review, some of the landmark results related to attaining intramolecular resolution with non-contact atomic force microscopy (NC-AFM) are summarised before focussing on recent reports probing molecular assemblies where apparent intermolecular features have been observed. Several groups have now highlighted the critical role that flexure in the tip-sample junction plays in producing the exceptionally sharp images of both intra- and apparent inter-molecular structure. In the latter case, the features have been identified as imaging artefacts, rather than real intermolecular bonds. This review discusses the potential for NC-AFM to provide exceptional resolution of supramolecular assemblies stabilised via a variety of intermolecular forces and highlights the potential challenges and pitfalls involved in interpreting bonding interactions.


Subject(s)
Microscopy, Atomic Force/methods , Hydrogen Bonding , Molecular Structure , Nanotechnology/methods
2.
Beilstein J Nanotechnol ; 4: 941-8, 2013 Dec 20.
Article in English | MEDLINE | ID: mdl-24455452

ABSTRACT

In this paper we examine the stability of silicon tip apices by using density functional theory (DFT) calculations. We find that some tip structures - modelled as small, simple clusters - show variations in stability during manipulation dependent on their orientation with respect to the sample surface. Moreover, we observe that unstable structures can be revealed by a characteristic hysteretic behaviour present in the F(z) curves that were calculated with DFT, which corresponds to a tip-induced dissipation of hundreds of millielectronvolts resulting from reversible structural deformations. Additionally, in order to model the structural evolution of the tip apex within a low temperature NC-AFM experiment, we simulated a repeated tip-surface indentation until the tip structure converged to a stable termination and the characteristic hysteretic behaviour was no longer observed. Our calculations suggest that varying just a single rotational degree of freedom can have as measurable an impact on the tip-surface interaction as a completely different tip structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...