Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther Methods Clin Dev ; 8: 141-151, 2018 Mar 16.
Article in English | MEDLINE | ID: mdl-29687033

ABSTRACT

New treatments to overcome the obstacles of conventional anti-cancer therapy are a permanent subject of investigation. One promising approach is the application of toxins linked to cell-specific ligands, so-called immunotoxins. Another attractive option is the employment of toxin-encoding plasmids. However, immunotoxins cause hepatoxicity, and DNA therapeutics, among other disadvantages, bear the risk of insertional mutagenesis. As an alternative, this study examined chemically modified mRNAs coding for diphtheria toxin, subtilase cytotoxin, and abrin-a for their ability to reduce cancer cell growth both in vitro and in vivo. The plant toxin abrin-a was the most promising candidate among the three tested toxins and was further investigated. Its expression was demonstrated by western blot. Experiments with firefly luciferase in reticulocyte lysates and co-transfection experiments with EGFP demonstrated the capability of abrin-a to inhibit protein synthesis. Its cytotoxic effect was quantified employing viability assays and propidium iodide staining. By studying caspase-3/7 activation, Annexin V-binding, and chromatin condensation with Hoechst33258 staining, apoptotic cell death could be confirmed. In mice, repeated intratumoral injections of complexed abrin-a mRNA resulted in a significant reduction (89%) of KB tumor size compared to a non-translatable control mRNA.

2.
J Control Release ; 249: 143-149, 2017 03 10.
Article in English | MEDLINE | ID: mdl-28161466

ABSTRACT

In this study lipoplexes containing chemically modified messenger RNA (cmRNA) were incorporated into poly (lactic-co-glycolic acid) (PLGA) microspheres via water-in-oil-in-water (W/O/W) double emulsion solvent evaporation technique. The nanoparticle encapsulation by microparticle formation was optimized to achieve lipoplex release and maximum transfection efficiency in surrounding cells. It was possible to adjust characteristic features in surface topology and size of the PLGA-microspheres by varying the extent of lipoplex loading into the polymer matrix. The partial release of lipids and mRNA out of the microparticle system, their accumulation in cells and the production of encoded protein were visualized via fluorescence microscopy. These bioactive microspheres, containing cmRNA bearing lipoplexes, were developed for the incorporation of a therapeutic component into injectable calcium phosphate cements (CPC). Due to the incorporation of PLGA/lipoplex microspheres as a degradable entity, the porosity of the cement phase could additionally be adjusted. This approach of complex nanoparticle incorporation into polymer/cement composites represents a promising example for combining transcript therapy with biomechanical engineering.


Subject(s)
Calcium Phosphates/chemistry , Lactic Acid/chemistry , Polyglycolic Acid/analogs & derivatives , RNA, Messenger/administration & dosage , Transfection/methods , Animals , Cell Line , Mice , Myoblasts/cytology , Myoblasts/metabolism , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Porosity , RNA, Messenger/chemistry , RNA, Messenger/genetics
3.
Angew Chem Int Ed Engl ; 55(33): 9591-5, 2016 08 08.
Article in English | MEDLINE | ID: mdl-27376704

ABSTRACT

The development of chemically modified mRNA holds great promise as a new class of biologic therapeutics. However, the intracellular delivery and endosomal escape of mRNA encapsulated in nanoparticles has not been systematically investigated. Here, we synthesized a diverse set of cationic polymers and lipids from a series of oligoalkylamines and subsequently characterized their mRNA delivery capability. Notably, a structure with an alternating alkyl chain length between amines showed the highest transfection efficiency, which was linked to a high buffering capacity in a narrow range of pH 6.2 to 6.5. Variation in only one methylene group resulted in enhanced mRNA delivery to both the murine liver as well as porcine lungs after systemic or aerosol administration, respectively. These findings reveal a novel fundamental structure-activity relationship for the delivery of mRNA that is independent of the class of mRNA carrier and define a promising new path of exploration in the field of mRNA therapeutics.


Subject(s)
Amines/chemistry , Lipids/chemistry , Polymers/chemistry , RNA, Messenger/genetics , Animals , Cations/chemistry , Mice , NIH 3T3 Cells , Structure-Activity Relationship , Swine
4.
Biomacromolecules ; 14(6): 1867-76, 2013 Jun 10.
Article in English | MEDLINE | ID: mdl-23597098

ABSTRACT

Many phosphorylated nucleoside derivatives have therapeutic potential, but their application is limited by problems with membrane permeability and with intracellular delivery. Here, we prepared polypyrrole microvessel structures modified with superparamagnetic nanoparticles for use as potential carriers of nucleotides. The microvessels were prepared via the photochemical polymerization of the monomer onto the surface of aqueous ferrofluidic droplets. A complementary physicochemical analysis revealed that a fraction of the nanoparticles was embedded in the microvessel walls, while the other nanoparticles were in the core of the vessel. SQUID (superconducting quantum interference device) measurements indicated that the incorporated nanoparticles retained their superparamagnetic properties; thus, the resulting nanoparticle-modified microvessels can be directed by an external magnetic field. As a result of these features, these microvessels may be useful as drug carriers in biomedical applications. To demonstrate the encapsulation of drug molecules, two labeled mRNA cap analogues, nucleotide-derived potential anticancer agents, were used. It was shown that the cap analogues are located in the aqueous core of the microvessels and can be released to the external solution by spontaneous permeation through the polymer walls. Mass spectrometry analysis confirmed that the cap analogues were preserved during encapsulation, storage, and release. This finding provides a foundation for the future development of anticancer therapies and for the delivery of nucleotide-based therapeutics.


Subject(s)
Magnetics , Nanoparticles , Polymers/chemistry , Pyrroles/chemistry , RNA Caps , RNA, Messenger/chemistry , Microscopy, Electron, Scanning , Powder Diffraction
5.
Biomacromolecules ; 14(3): 828-33, 2013 Mar 11.
Article in English | MEDLINE | ID: mdl-23327587

ABSTRACT

To limit cytotoxicity of anticancer drugs against healthy cells, an appropriate carrier should be synthesized to deliver the drug to the tumor tissue only. A good solution is to anchor a magnetic nanoparticle to the molecule of the drug and to use a properly directed external magnetic field. The synthesis of the conjugate of doxorubicin with magnetic nanoparticles (iron oxide) modified by us resulted in a substantial depression of the aggregation process of the nanoparticles and therefore allowed the correct examination of cytotoxicity of the modified drug. It has been shown, by performing the electrochemical microbalance measurements, that the use of magnetic field guaranteed the efficient delivery of the drug to the desired place. The change in the synthesis procedure led to an increase in the number of DOX molecules attached to one magnetic nanoparticle. The release of the drug took place at pH 5.8 (and below it), which pH characterizes the cancer cells. It has also been found that while the iron oxide magnetic nanoparticles were not cytotoxic toward human urinary bladder carcinoma cells UM-UC-3, the tumor cell sensitivity of the DOX-Np complex was slightly higher in comparison to the identical concentration of doxorubicin alone.


Subject(s)
Drug Delivery Systems/methods , Magnetite Nanoparticles/chemistry , Neoplasms/drug therapy , Cell Line, Tumor , Doxorubicin/chemistry , Doxorubicin/pharmacology , Drug Carriers/chemistry , Ferric Compounds/chemistry , Humans , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...