Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Sci Rep ; 14(1): 7688, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38561414

ABSTRACT

At first, an organometallic catalyst namely, Pd-DPyE@MCM-41@MNP was prepared through magnetic (Fe3O4) nanoparticles-doped into channels of mesoporous silica MCM-41 and then, anchoring a novel complex composed of di(4-pyridyl)ethylene and palladium on the inner surface of the support. This immobilized catalyst was successfully identified via VSM, ICP-OES, TEM, FTIR, TGA, SEM, BET, XRD, EDX and elemental mapping analyses. After that, it was used as a versatile, heterogeneous, and magnetically reproducible catalyst in the generation of N,N'-alkylidene bisamides (1a-13a, 8-20 min, 90-98%, 50 °C, solvent-free) and Suzuki-Miyaura coupling (SMC) reaction derivatives (1b-26b, 10-140 min, 86-98%, 60 °C, PEG-400). The VSM plot of Pd-DPyE@MCM-41@MNP displays that this nanocatalyst can be easily recycled by applying an external magnetic field. In both synthetic paths, this nanocatalyst was reused at least seven times without palladium leaching and significantly reducing its catalytic performance. Also, stability and heterogeneous nature of catalyst were approved via ICP-OES technique and hot filtration test.

2.
Anal Methods ; 16(9): 1306-1322, 2024 02 29.
Article in English | MEDLINE | ID: mdl-38344759

ABSTRACT

Electrochemical techniques are commonly used to analyze and screen various environmental pathogens. When used in conjunction with other optical recognition methods, it can extend the sensing range, lower the detection limit, and offer mutual validation. Nowadays, electrochemical-optical dual-mode biosensors have ensured the accuracy of test results by integrating two signals into one, indicating their potential use in primary food safety quantitative assays and screening tests. Particularly, visible optical signals from electrochemical/colorimetric dual-mode biosensors could meet the demand for real-time screening of microbial pathogens. While electrochemical-optical dual-mode probes have been receiving increasing attention, there is limited emphasis on the design approaches for sensors intended for microbial pathogens. Here, we review the recent progress in the merging of optical and electrochemical techniques, including fluorescence, colorimetry, surface plasmon resonance (SPR), and surface enhanced Raman spectroscopy (SERS). This study particularly emphasizes the reporting of various sensing performances, including sensing principles, types, cutting-edge design approaches, and applications. Finally, some concerns and upcoming advancements in dual-mode probes are briefly outlined.


Subject(s)
Biosensing Techniques , Biosensing Techniques/methods , Surface Plasmon Resonance/methods , Electrochemical Techniques/methods , Food Safety , Colorimetry
3.
Complex Intell Systems ; : 1-27, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36777815

ABSTRACT

When COVID-19 spread in China in December 2019, thousands of studies have focused on this pandemic. Each presents a unique perspective that reflects the pandemic's main scientific disciplines. For example, social scientists are concerned with reducing the psychological impact on the human mental state especially during lockdown periods. Computer scientists focus on establishing fast and accurate computerized tools to assist in diagnosing, preventing, and recovering from the disease. Medical scientists and doctors, or the frontliners, are the main heroes who received, treated, and worked with the millions of cases at the expense of their own health. Some of them have continued to work even at the expense of their lives. All these studies enforce the multidisciplinary work where scientists from different academic disciplines (social, environmental, technological, etc.) join forces to produce research for beneficial outcomes during the crisis. One of the many branches is computer science along with its various technologies, including artificial intelligence, Internet of Things, big data, decision support systems (DSS), and many more. Among the most notable DSS utilization is those related to multicriterion decision making (MCDM), which is applied in various applications and across many contexts, including business, social, technological and medical. Owing to its importance in developing proper decision regimens and prevention strategies with precise judgment, it is deemed a noteworthy topic of extensive exploration, especially in the context of COVID-19-related medical applications. The present study is a comprehensive review of COVID-19-related medical case studies with MCDM using a systematic review protocol. PRISMA methodology is utilized to obtain a final set of (n = 35) articles from four major scientific databases (ScienceDirect, IEEE Xplore, Scopus, and Web of Science). The final set of articles is categorized into taxonomy comprising five groups: (1) diagnosis (n = 6), (2) safety (n = 11), (3) hospital (n = 8), (4) treatment (n = 4), and (5) review (n = 3). A bibliographic analysis is also presented on the basis of annual scientific production, country scientific production, co-occurrence, and co-authorship. A comprehensive discussion is also presented to discuss the main challenges, motivations, and recommendations in using MCDM research in COVID-19-related medial case studies. Lastly, we identify critical research gaps with their corresponding solutions and detailed methodologies to serve as a guide for future directions. In conclusion, MCDM can be utilized in the medical field effectively to optimize the resources and make the best choices particularly during pandemics and natural disasters.

4.
IEEE J Biomed Health Inform ; 27(2): 878-887, 2023 02.
Article in English | MEDLINE | ID: mdl-35417360

ABSTRACT

Efficient evaluation for machine learning (ML)-based intrusion detection systems (IDSs) for federated learning (FL) in the Internet of Medical Things (IoMTs) environment falls under the standardisation and multicriteria decision-making (MCDM) problems. Thus, this study is developing an MCDM framework for standardising and benchmarking the ML-based IDSs used in the FL architecture of IoMT applications. In the methodology, firstly, the evaluation criteria of ML-based IDSs are standardised using the fuzzy Delphi method (FDM). Secondly, the evaluation decision matrix (DM) is formulated based on the intersection of standardised evaluation criteria and a list of ML-based IDSs. Such formulation is achieved using a dataset with 125,973 records, and each record comprises 41 features. Thirdly, the integration of MCDM methods is formulated to determine the importance weights of the main and sub standardised security and performance criteria, followed by benchmarking and selecting the optimal ML-based IDSs. In this phase, the Borda voting method is used to unify the different ranks and perform a group benchmarking context. The following results are confirmed. (1) Using FDM, 17 out of 20 evaluation criteria (14 for security and 3 for performance) reach the consensus of experts. (2) The area under curve criterion has the lowest set of weights, whilst the CPU time criterion has the highest one. (3) VIKOR group ranking shows that the BayesNet is a best classifier, whilst SVM is the last choice. For evaluation, three assessments, namely, systematic ranking, computational cost and comparative analysis, are used.


Subject(s)
Benchmarking , Humans , Reference Standards
5.
Sensors (Basel) ; 22(22)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36433307

ABSTRACT

Dealing with the islanded operation of a microgrid (MG), the micro sources must cooperate autonomously to regulate the voltage and frequency of the local power grid. Droop controller-based primary control is a method typically used to self-regulate voltage and frequency. The first problem of the droop method is that in a steady state, the microgrid's frequency and voltage deviate from their nominal values. The second concerns the power-sharing issue related to mismatched power line impedances between Distribution Generators (DGs) and MGs. A Secondary Control Unit (SCU) must be used as a high-level controller for droop-based primary control to address the first problem. This paper proposed a decentralized SCU scheme to deal with this issue using optimized PI controllers based on a Genetic Algorithm (GA) and Artificial Neural Networks (ANNs). The GA provides the appropriate adjustment parameters for all adopted PI controllers in the primary control-based voltage and current control loops and SCU-based voltage and frequency loops. ANNs are additionally activated in SCUs to provide precise online control parameter modification. In the proposed control structure, a virtual impedance method is adopted in the primary control scheme to address the power-sharing problem of parallel DGs. Further, in this paper, one of the main objectives includes electricity transmission over long distances using Low-Voltage DC Transmission (LVDCT) systems to reduce power losses and eradicate reactive power problems. Voltage Source Inverters (VSIs) are adopted to convert the DC electrical energy into AC near the consumer loads. The simulation results illustrated the feasibility of the proposed solutions in restoring voltage and frequency deviations, reducing line losses, as well as achieving active and reactive power sharing among the DGs connected to the MG.


Subject(s)
Electric Power Supplies , Electricity , Computer Simulation , Electric Impedance , Neural Networks, Computer
6.
Microbiol Resour Announc ; 11(11): e0097722, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36250864

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant was first reported in India. Thereafter, the Delta variant became the most prevalent variant globally. Here, we report the complete genome sequence of an early imported case of a SARS-CoV-2 B.1.617.2 AY.122 strain in Iraq. The strain was obtained from a flight passenger from India to Iraq on 20 April 2021.

7.
PLoS One ; 17(5): e0267295, 2022.
Article in English | MEDLINE | ID: mdl-35617193

ABSTRACT

Since the first reported case of coronavirus disease 2019 (COVID-19) in China, SARS-CoV-2 has been spreading worldwide. Genomic surveillance of SARS-CoV-2 has had a critical role in tracking the emergence, introduction, and spread of new variants, which may affect transmissibility, pathogenicity, and escape from infection or vaccine-induced immunity. As anticipated, the rapid increase in COVID-19 infections in Iraq in February 2021 is due to the introduction of variants of concern during the second wave of the COVID-19 pandemic. To understand the molecular epidemiology of SARS-CoV-2 during the second wave in Iraq (2021), we sequenced 76 complete SARS-CoV-2 genomes using NGS technology and identified genomic mutations and proportions of circulating variants among these. Also, we performed an in silico study to predict the effect of the truncation of NS7a protein (ORF7a) on its function. We detected nine different lineages of SARS-CoV-2. The B.1.1.7 lineage was predominant (80.20%) from February to May 2021, while only one B.1.351 strain was detected. Interestingly, the phylogenetic analysis showed that multiple strains of the B.1.1.7 lineage clustered closely with those from European countries. A notable frequency (43.33%) of stop codon mutation (NS7a Q62stop) was detected among the B.1.1.7 lineage sequences. In silico analysis of NS7a with Q62stop found that this stop codon had no considerable effect on the function of NS7a. This work provides molecular epidemiological insights into the spread variants of SARS-CoV-2 in Iraq, which are most likely imported from Europe.


Subject(s)
COVID-19 , SARS-CoV-2 , Viral Proteins/genetics , COVID-19/epidemiology , Codon, Nonsense , Codon, Terminator , Humans , Iraq/epidemiology , Mutation , Pandemics , Phylogeny , Prevalence , SARS-CoV-2/genetics
8.
Turk J Chem ; 46(3): 704-720, 2022.
Article in English | MEDLINE | ID: mdl-37720600

ABSTRACT

A new nanocomposite superhydrophobic of the RTV (room temperature vulcanized) silicon rubber reinforced with a different percentage of nanosilica was prepared by a two-stage sol-gel route to obtain a superhydrophobic surface coating on high voltage glass insulator, preventing the dust-water droplet from adhering to its surface. The cold spraying technique was utilized to build up a thin nanocomposite superhydrophobic layer on the glass insulator containing different percentages of the nanosilica particles, such as 23 wt %, 33 wt %, and 44 wt % with RTV silicon substrate. The synthesized nanocomposite was analyzed using the contact angle, roughness, adhesion, hardness, and dielectric strength tests. Moreover, the prepared RTV silicon rubber/nanosilica superhydrophobic nanocomposite layer was characterized using the field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and the particle size analysis test. Based on the results, the nanosilica particles were well-incorporated into the RTV silicon rubber, obtaining an excellent homogenous distribution thin layer on its surface, supporting its capability to be a superior superhydrophobic surface. The results reveal that the RTV silicon rubber/33wt % nanosilica was the best as a superhydrophobic behavior with a contact angle reaching higher than 158° ± 3; also, a significant change in the dielectric strength was obtained to be 25.5 kV (using a speed voltage of 5.0 kV/s). Importantly, the flashover test was also conducted, and it was found that there was a significant change in the leak current between the coated and uncoated samples. The leak current of the coated sample with a superhydrophobic nanocomposite was reduced to 2.5 mA, while the uncoated sample became 3.2 mA using a voltage load value of 60 kV. The results presented here may improve the nanocomposite material as an antiweathering superhydrophobic thin layer supported by the prepared nano-SiO2 particles against the dust-water droplets which may be adhesive to the high voltage glass insulator.

9.
Sensors (Basel) ; 21(15)2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34372310

ABSTRACT

A practical demonstration of pH measurement in real biological samples with an in-house developed fiber-optic pH sensor system is presented. The sensor uses 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) fluorescent dye as the opto-chemical transducer. The dye is immobilized in a hybrid sol-gel matrix at the tip of a tapered optical fiber. We used 405 nm and 450 nm laser diodes for the dye excitation and a photomultiplier tube as a detector. The sensor was used for the measurement of pH in human aqueous humor samples during cataract surgery. Two groups of patients were tested, one underwent conventional phacoemulsification removal of the lens while the other was subjected to femtosecond laser assisted cataract surgery (FLACS). The precision of the measurement was ±0.04 pH units. The average pH of the aqueous humor of patients subjected to FLACS and those subjected to phacoemulsification were 7.24 ± 0.17 and 7.31 ± 0.20 respectively.


Subject(s)
Laser Therapy , Phacoemulsification , Aqueous Humor , Humans , Hydrogen-Ion Concentration , Prospective Studies
10.
Microbiol Resour Announc ; 10(4)2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33509990

ABSTRACT

The coding-complete genome sequence of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strain isolated from an Iraqi patient was sequenced for the first-time using Illumina MiSeq technology. There was a D614G mutation in the spike protein-coding sequence. This report is valuable for better understanding the spread of the virus in Iraq.

11.
Materials (Basel) ; 13(22)2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33212802

ABSTRACT

Laser sources emitting in the infrared range at around 2 µm are attracting great interest for a variety of applications like processing of transparent thermoplastic polymers in industry as well as plenty of applications in medicine, spectroscopy, gas sensing, nonlinear frequency conversion to the mid-infrared, to mention a few. Of late, fiber lasers compared to other kinds of lasers benefit from their all-fiber design, leading to a compact, robust, and well thermally manageable device. Particularly, thulium- and holmium-doped fiber lasers are the first choice in fiber lasers emitting light around 2 µm. In this paper, we give an overview of our recent results in the research on thulium- and holmium-doped optical fibers, fiber lasers, and related research topics in the 2-µm spectral range. In particular, we present, to our knowledge, the first results of improvement of pump absorption in double-clad fibers thanks to the fiber twist frozen during drawing. Finally, a brief demonstration of material processing by thulium all-fiber laser operating at 2 µm is presented.

12.
Opt Express ; 28(9): 13601-13615, 2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32403831

ABSTRACT

We experimentally compared for the first time, two techniques of optical fiber preform shaping based on the mechanical grinding and thermal CO2 laser processing from the point of the inner-cladding losses. The shaped preforms were fabricated of coreless pure silica technical rods as well as high purity silica Heraeus F300 rods and drawn them into coreless multimode fibers with various inner-cladding geometries coated with a low index fluorinated polymers. The background losses of the fibers were measured via the cut-back method and compared to the losses of the unshaped fibers with a circular cross-section. Results show that both preform-shaping techniques would induce additional losses in the inner-cladding. High surface scattering losses were observed in the mechanically-grinded fibers. On the other hand, the mechanical grinding retains the advantage of a significant reduction of attenuation peaks attributed to OH-groups that penetrated into the preform surface during the preform collapse. On the contrary, CO2 laser thermal-shaping provides the advantage of quick, fully automated shaping with smooth surface finish and induces much lower scattering losses, but it is not so effective in removing water penetrated surface layer of the preform so that OH-groups diffuse deeper towards the preform center. Additionally, laser thermal-shaping allows processing the preform to complex shapes which are more effective in scrambling cladding modes. Some of the absorption peaks of OH-groups and fluorinated polymers may be rather close to common pumping wavelengths and this should be considered in the design of the double-clad fibers and selection of proper shaping technology.

13.
Sultan Qaboos Univ Med J ; 19(1): e68-e72, 2019 Feb.
Article in English | MEDLINE | ID: mdl-31198599

ABSTRACT

Transoral endoscopic thyroidectomy was first described as an experimental sublingual approach. This approach was modified to a vestibular approach to avoid complications. In this report, we describe the results of the first ten cases of a transoral endoscopic thyroidectomy via vestibular approach (TOETVA) performed in Iraq. All operations were performed at Al Shifa General Hospital, Basrah, Iraq, in 2017 using three laparoscopic ports inserted at the oral vestibule. One out of ten patients underwent a near total thyroidectomy, the remaining cases underwent thyroid lobectomies. The average operative time was 113.5 minutes and the average duration of hospital stay was 41.9 hours. One case of mild cervical emphysema and one case of temporary mental nerve palsy were reported but both were treated conservatively without permanent sequelae. In conclusion, TOETVA is a safe, feasible procedure with an excellent cosmetic outcome when the patients are selected carefully.


Subject(s)
Endoscopy/methods , Thyroidectomy/methods , Adult , Body Mass Index , Endoscopy/standards , Female , Humans , Iraq , Male , Thyroidectomy/standards , Treatment Outcome
14.
Diabet Foot Ankle ; 7: 29605, 2016.
Article in English | MEDLINE | ID: mdl-26983600

ABSTRACT

There are a few studies that discuss the medical causes for diabetic foot (DF) ulcerations in Iraq, one of them in Wasit province. The aim of our study was to analyze the medical, therapeutic, and patient risk factors for developing DF ulcerations among diabetic patients in Baghdad, Iraq.

15.
Patient Prefer Adherence ; 8: 1647-51, 2014.
Article in English | MEDLINE | ID: mdl-25473271

ABSTRACT

BACKGROUND: During Ramadan, Muslims fast throughout daylight hours. There is a direct link between fasting and increasing incidence of infections. Antibiotic usage for treatment of infections should be based on accurate diagnosis, with the correct dose and dosing regimen for the shortest period to avoid bacterial resistance. This study aimed to evaluate the practices of physicians in prescribing suitable antibiotics for fasting patients and the compliance of the patients in using such antibiotics at regular intervals. MATERIALS AND METHODS: An observational study was carried out during the middle 10 days of Ramadan 2014 in two pharmacies at Baghdad. A total of 34 prescriptions (Rx) for adults who suffered from infections were examined. For each included Rx, the researchers documented the age and sex of the patient, the diagnosis of the case, and the name of the given antibiotic(s) with dose and frequency of usage. A direct interview with the patient was also done, at which each patient was asked about fasting and if he/she would like to continue fasting during the remaining period of Ramadan. The patient was also asked if the physician asked him/her about fasting before writing the Rx. RESULTS: More than two-thirds of participating patients were fasting during Ramadan. Antibiotics were prescribed at a higher percentage by dentists and surgeons, for which a single antibiotic with a twice-daily regimen was the most commonly prescribed by physicians for patients during the Ramadan month. CONCLUSION: Physicians fail to take patient fasting status into consideration when prescribing antibiotics for their fasting patients. Antibiotics with a twice-daily regimen are not suitable and best to be avoided for fasting patients in Iraq during Ramadan - especially if it occurs during summer months - to avoid treatment failure and provoking bacterial resistance.

16.
Sensors (Basel) ; 13(10): 13276-88, 2013 Sep 30.
Article in English | MEDLINE | ID: mdl-24084118

ABSTRACT

An efficient and low cost optical method for directly measuring the concentration of homogenous biological solutes is proposed and demonstrated. The proposed system operates by Fresnel reflection, with a flat-cleaved single-mode fiber serving as the sensor probe. A laser provides a 12.9 dBm sensor signal at 1,550 nm, while a computer-controlled optical power meter measures the power of the signal returned by the probe. Three different mesenchymal stem cell (MSC) lines were obtained, sub-cultured and trypsinized daily over 9 days. Counts were measured using a haemocytometer and the conditioned media (CM) was collected daily and stored at -80 °C. MSCs release excretory biomolecules proportional to their growth rate into the CM, which changes the refractive index of the latter. The sensor is capable of detecting changes in the number of stem cells via correlation to the change in the refractive index of the CM, with the measured power loss decreasing approximately 0.4 dB in the CM sample per average 1,000 cells in the MSC subculture. The proposed system is highly cost-effective, simple to deploy, operate, and maintain, is non-destructive, and allows reliable real-time measurement of various stem cell proliferation parameters.


Subject(s)
Biopolymers/analysis , Biopolymers/biosynthesis , Culture Media/analysis , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/physiology , Photometry/instrumentation , Refractometry/instrumentation , Biosensing Techniques/instrumentation , Cell Proliferation , Cells, Cultured , Culture Media/chemistry , Equipment Design , Equipment Failure Analysis , Flow Cytometry/instrumentation , Humans , Reproducibility of Results , Sensitivity and Specificity
17.
Appl Opt ; 50(30): 5912-6, 2011 Oct 20.
Article in English | MEDLINE | ID: mdl-22015420

ABSTRACT

Effects of immersing a microfiber knot resonator (MKR) in liquid solutions that have refractive indices close to that of silica are experimentally demonstrated and theoretically analyzed. Significant improvement in resonance extinction ratio within 2 to 10 dB was observed. To achieve a better understanding, a qualitative analysis of the coupling ratio and round-trip attenuation of the MKR is performed by using a curve-fitting method. It was observed that the coupling coefficient at the knot region increased when immersed in liquids. However, depending on the initial state of the coupling and the quantity of the increment in the coupling coefficient when immersed in a liquid, it is possible that the MKR may experience a deficit in the coupling parameter due to the sinusoidal relationship with the coupling coefficient.

SELECTION OF CITATIONS
SEARCH DETAIL