Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Geophys Res Space Phys ; 127(4): e2022JA030280, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35866073

ABSTRACT

At Mercury, several processes can release ions and neutrals out of the planet's surface. Here we present enhancements of planetary ions (Na+-group ions) in Mercury's northern magnetospheric cusp during flux transfer event (FTE) "showers." FTE showers are intervals of intense dayside magnetopause reconnection, during which FTEs are observed in quick succession, that is, only separated by a few seconds. This study identifies 1953 FTE shower intervals and 1795 Non-FTE shower intervals. During the shower intervals, this study shows that the FTEs form a solar wind entry layer equatorward of the northern magnetospheric cusp. In this entry layer, solar wind ions are accelerated and move downward (i.e., planetward) toward the cusp, which sputter upward-moving planetary ions with a particle flux of 1 × 1011 m-2 s-1 within 1 min. The precipitation rate is estimated to increase by an order of magnitude during FTE showers, to 2 × 1025 s-1, and the neutral density of the exosphere could vary by >10% in response to this FTE-driven sputtering. Such rapid large-scale variations driven by dayside reconnection may explain the minute-to-minute changes in Mercury's exosphere, especially on the high latitudes, observed by ground-based telescopes on Earth. Our MESSENGER in situ observation of enhanced planetary ions in the entry layer likely corresponds to an escape channel for Mercury's planetary ions. Comprehensive, future multipoint measurements made by BepiColombo will greatly enhance our understanding of the processes contributing to Mercury's dynamic exosphere and magnetosphere.

2.
Geophys Res Lett ; 48(8): e2021GL092980, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-34219841

ABSTRACT

We present the first investigation and quantification of the photoionization loss process to Mercury's sodium exosphere from spacecraft and ground-based observations. We analyze plasma and neutral sodium measurements from NASA's MESSENGER spacecraft and the THEMIS telescope. We find that the sodium ion (Na+) content and therefore the significance of photoionization varies with Mercury's orbit around the Sun (i.e., true anomaly angle: TAA). Na+ production is affected by the neutral sodium solar-radiation acceleration loss process. More Na+ was measured on the inbound leg of Mercury's orbit at 180°-360° TAA because less neutral sodium is lost downtail from radiation acceleration. Calculations using results from observations show that the photoionization loss process removes ∼1024 atoms/s from the sodium exosphere (maxima of 4 × 1024 atoms/s), showing that modeling efforts underestimate this loss process. This is an important result as it shows that photoionization is a significant loss process and larger than loss from radiation acceleration.

3.
Nat Commun ; 11(1): 4350, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32994408

ABSTRACT

Mercury has a global dayside exosphere, with measured densities of 10-2 cm-3 at ~1500 km. Here we report on the inferred enhancement of neutral densities (<102 cm-3) at high altitudes (~5300 km) by the MESSENGER spacecraft. Such high-altitude densities cannot be accounted for by the typical exosphere. This event was observed by the Fast-Imaging Plasma Spectrometer (FIPS), which detected heavy ions of planetary origin that were recently ionized, and "picked up" by the solar wind. We estimate that the neutral density required to produce the observed pickup ion fluxes is similar to typical exospheric densities found at ~700 km altitudes. We suggest that this event was most likely caused by a meteroid impact. Understanding meteoroid impacts is critical to understanding the source processes of the exosphere at Mercury, and the use of plasma spectrometers will be crucial for future observations with the Bepi-Colombo mission.

4.
J Geophys Res Space Phys ; 121(3): 2274-2307, 2016 03.
Article in English | MEDLINE | ID: mdl-27867794

ABSTRACT

We report the first Jupiter X-ray observations planned to coincide with an interplanetary coronal mass ejection (ICME). At the predicted ICME arrival time, we observed a factor of ∼8 enhancement in Jupiter's X-ray aurora. Within 1.5 h of this enhancement, intense bursts of non-Io decametric radio emission occurred. Spatial, spectral, and temporal characteristics also varied between ICME arrival and another X-ray observation two days later. Gladstone et al. (2002) discovered the polar X-ray hot spot and found it pulsed with 45 min quasiperiodicity. During the ICME arrival, the hot spot expanded and exhibited two periods: 26 min periodicity from sulfur ions and 12 min periodicity from a mixture of carbon/sulfur and oxygen ions. After the ICME, the dominant period became 42 min. By comparing Vogt et al. (2011) Jovian mapping models with spectral analysis, we found that during ICME arrival at least two distinct ion populations, from Jupiter's dayside, produced the X-ray aurora. Auroras mapping to magnetospheric field lines between 50 and 70 RJ were dominated by emission from precipitating sulfur ions (S7+,…,14+). Emissions mapping to closed field lines between 70 and 120 RJ and to open field lines were generated by a mixture of precipitating oxygen (O7+,8+) and sulfur/carbon ions, possibly implying some solar wind precipitation. We suggest that the best explanation for the X-ray hot spot is pulsed dayside reconnection perturbing magnetospheric downward currents, as proposed by Bunce et al. (2004). The auroral enhancement has different spectral, spatial, and temporal characteristics to the hot spot. By analyzing these characteristics and coincident radio emissions, we propose that the enhancement is driven directly by the ICME through Jovian magnetosphere compression and/or a large-scale dayside reconnection event.

SELECTION OF CITATIONS
SEARCH DETAIL
...