Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sports Med Open ; 10(1): 39, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38625486

ABSTRACT

BACKGROUND: Sleep is a critical component of recovery, but it can be disrupted following prolonged endurance exercise. The objective of this study was to examine the capacity of male and female professional cyclists to recover between daily race stages while competing in the 2022 Tour de France and the 2022 Tour de France Femmes, respectively. The 17 participating cyclists (8 males from a single team and 9 females from two teams) wore a fitness tracker (WHOOP 4.0) to capture recovery metrics related to night-time sleep and autonomic activity for the entirety of the events and for 7 days of baseline before the events. The primary analyses tested for a main effect of 'stage classification'-i.e., rest, flat, hilly, mountain or time trial for males and flat, hilly or mountain for females-on the various recovery metrics. RESULTS: During baseline, total sleep time was 7.2 ± 0.3 h for male cyclists (mean ± 95% confidence interval) and 7.7 ± 0.3 h for female cyclists, sleep efficiency was 87.0 ± 4.4% for males and 88.8 ± 2.6% for females, resting HR was 41.8 ± 4.5 beats·min-1 for males and 45.8 ± 4.9 beats·min-1 for females, and heart rate variability during sleep was 108.5 ± 17.0 ms for males and 119.8 ± 26.4 ms for females. During their respective events, total sleep time was 7.2 ± 0.1 h for males and 7.5 ± 0.3 h for females, sleep efficiency was 86.4 ± 1.2% for males and 89.6 ± 1.2% for females, resting HR was 44.5 ± 1.2 beats·min-1 for males and 50.2 ± 2.0 beats·min-1 for females, and heart rate variability during sleep was 99.1 ± 4.2 ms for males and 114.3 ± 11.2 ms for females. For male cyclists, there was a main effect of 'stage classification' on recovery, such that heart rate variability during sleep was lowest after mountain stages. For female cyclists, there was a main effect of 'stage classification' on recovery, such that the percentage of light sleep (i.e., lower-quality sleep) was highest after mountain stages. CONCLUSIONS: Some aspects of recovery were compromised after the most demanding days of racing, i.e., mountain stages. Overall however, the cyclists obtained a reasonable amount of good-quality sleep while competing in these physiologically demanding endurance events. This study demonstrates that it is now feasible to assess recovery in professional athletes during multiple-day endurance events using validated fitness trackers.

2.
PLoS One ; 19(1): e0295899, 2024.
Article in English | MEDLINE | ID: mdl-38295026

ABSTRACT

Despite considerable health consequences from preterm births, their incidence remains unchanged over recent decades, due partially to limited screening methods and limited use of extant methods. Wearable technology offers a novel, noninvasive, and acceptable way to track vital signs, such as maternal heart rate variability (mHRV). Previous research observed that mHRV declines throughout the first 33 weeks of gestation in term, singleton pregnancies, after which it improves. The aim of this study was to explore whether mHRV inflection is a feature of gestational age or an indication of time to delivery. This retrospective case-control study considered term and preterm deliveries. Remote data collection via non-invasive wearable technology enabled diverse participation with subjects representing 42 US states and 16 countries. Participants (N = 241) were retroactively identified from the WHOOP (Whoop, Inc.) userbase and wore WHOOP straps during singleton pregnancies between March 2021 and October 2022. Mixed effect spline models by gestational age and time until birth were fit for within-person mHRV, grouped into preterm and term births. For term pregnancies, gestational age (Akaike information criterion (AIC) = 26627.6, R2m = 0.0109, R2c = 0.8571) and weeks until birth (AIC = 26616.3, R2m = 0.0112, R2c = 0.8576) were representative of mHRV trends, with significantly stronger fit for weeks until birth (relative log-likelihood ratio = 279.5). For preterm pregnancies, gestational age (AIC = 1861.9, R2m = 0.0016, R2c = 0.8582) and time until birth (AIC = 1848.0, R2m = 0.0100, R2c = 0.8676) were representative of mHRV trends, with significantly stronger fit for weeks until birth (relative log-likelihood ratio = 859.4). This study suggests that wearable technology, such as the WHOOP strap, may provide a digital biomarker for preterm delivery by screening for changes in nighttime mHRV throughout pregnancy that could in turn alert to the need for further evaluation and intervention.


Subject(s)
Premature Birth , Pregnancy , Female , Infant, Newborn , Humans , Premature Birth/epidemiology , Retrospective Studies , Case-Control Studies , Heart Rate , Biomarkers , Gestational Age
3.
PLoS One ; 18(6): e0285332, 2023.
Article in English | MEDLINE | ID: mdl-37267318

ABSTRACT

Stress contributes to the progression of many diseases. Despite stress' contribution towards disease, few methods for continuously measuring stress exist. We investigated if continuously measured cardiovascular signals from a wearable device can be used as markers of stress. Using wearable technology (WHOOP Inc, Boston, MA) that continuously measures and calculates heart rate (HR) and heart rate variability (root-mean-square of successive differences; HRV), we assessed duration and magnitude of deviations in HR and HRV around the time of a run (from 23665 runs) or high-stress work (from 8928 high-stress work events) in free-living conditions. HR and HRV were assessed only when participants were motionless (HRmotionless). Runs were grouped into light, moderate, and vigorous runs to determine dose response relationships. When examining HRmotionless and HRV throughout the day, we found that these metrics display circadian rhythms; therefore, we normalized HRmotionless and HRV measures for each participant relative to the time of day. Relative to the period within 30 minutes leading up to a run, HRmotionless is elevated for up to 180-210 minutes following a moderate or vigorous run (P<0.05) and is unchanged or reduced following a light run. HRV is reduced for at least 300 minutes following a moderate or vigorous run (P<0.05) and is unchanged during a light run. Relative to the period within 30 minutes leading up to high-stress work, HRmotionless is elevated during and for up to 30 minutes following high-stress work. HRV tends to be lower during high-stress work (P = 0.06) and is significantly lower 90-300 minutes after the end of the activity (P<0.05). These results demonstrate that wearables can quantify stressful events, which may be used to provide feedback to help individuals manage stress.


Subject(s)
Cardiovascular System , Occupational Stress , Wearable Electronic Devices , Humans , Social Conditions , Viscera , Heart Rate/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...