Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36499826

ABSTRACT

Growing awareness of the risks posed by pollution of the soil environment is leading to the development of new remediation strategies. The technique of aided phytostabilization, which involves the evaluation of new heavy-metal (HM)-immobilizing amendments, together with appropriately selected plant species, is a challenge for environmental protection and remediation of the soil environment, and seems to be promising. In this study, the suitability of bentonite for the technique of aided phytostabilization of soils contaminated with high HM concentrations was determined, using a mixture of two grass species. The HM contents in the tested plants and in the soil were determined by flame atomic absorption spectrometry. The application of bentonite had a positive effect on the biomass of the tested plants, and resulted in an increase in soil pH. The concentrations of copper, nickel, cadmium, lead and chromium were higher in the roots than in the above-ground parts of the plants, especially when bentonite was applied to the soil. The addition of the analyzed soil additive contributed significantly to a decrease in the levels of zinc, copper, cadmium and nickel in the soil at the end of the experiment. In view of the above, it can be concluded that the use of bentonite in the aided phytostabilization of soils polluted with HMs, is appropriate.

2.
Materials (Basel) ; 15(3)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35160816

ABSTRACT

Nanotechnology and nanomaterials, including silver nanoparticles (AgNPs), are increasingly important in modern science, economics, and agriculture. Their biological activity involves influencing plant health, physiological processes, growth, and yields, although they can also be toxic in the environment. A new fertiliser was made based on a urea solution with a relatively low content of AgNPs obtained by the reduction of silver nitrate V. Laboratory tests were used to assess the effect of a fertiliser solution containing 10 ppm AgNPs on the germination of agricultural plant seeds (barley, peas, oilseed rape) and vegetables (radish, cucumber, lettuce) and its foliar application on chlorophyll content, stomatal conductance, and seedling biomass. Field experiments were conducted to assess the effect that a foliar application of 15 ppm AgNPs in working liquid had on physiological plant parameters and yields of rape and cucumber. The AgNPs in the tested fertiliser reduced infestation of the germinating seeds by pathogens and positively affected the physiological processes, productivity, and yields of plants. Plant response depended on plant species and habitat conditions. Reduced pathogen infestation of seeds, higher germination energy, increased chlorophyll content and stomatal conductance, and higher seedling masses all occurred under the influence of AgNPs, mainly in oilseed rape and cucumber, and especially under thermal stress. The beneficial effect of AgNPs on the yield of these plants occurred in years of unfavourable weather conditions. The positive agricultural test results, especially under stress conditions, indicate that fertiliser produced with AgNPs as an ingredient may reduce the use of pesticides and highly concentrated mineral fertilisers. Such a fertiliser is fully in line with the idea of sustainable agriculture. However, research on the effects that AgNPs and fertiliser have on the environment and humans should continue.

3.
Sci Rep ; 11(1): 16660, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34404883

ABSTRACT

Efficient use of scarce water resources is both a marketing objective and an environmental obligation for sustainable agriculture. In modern agricultural production, which is intensive and should at the same time be environmentally friendly, there is a need to monitor soil moisture, salinity and temperature. The aim of the study was to determine the demand of producers of agricultural and horticultural plants for equipment and systems for monitoring soil properties at an individual farm level in regions with highly developed agriculture. A questionnaire survey was conducted among 1087 respondents, also direct interviews in Poland were undertaken. According to the producers' responses, it is important to know soil moisture, salinity and temperature, although currently only about 4% of the surveyed farmers have the equipment to evaluate these soil parameters. In their view cost is not the most important obstacle to the purchase of the necessary probes. More important is that the devices should be easy to install and use, and have an easy to use application for data collection, processing and transfer. The current market does not offer solutions that meet these producers expectations. The demand for suitable probes is very high as over 80% of the farmers declared their willingness to purchase such probes. Technical problems related to the operation and servicing of such equipment were the most frequently mentioned impediments in their use. However, farmers and horticulturists believe that knowledge of their soil properties would allow them to optimize the elements of cultivation technology, including the use of plant irrigation systems, the use of mineral fertilizers and plant protection products.

4.
Materials (Basel) ; 14(10)2021 May 14.
Article in English | MEDLINE | ID: mdl-34069264

ABSTRACT

In recent years, a lot of attention has been given to searching for new additives which will effectively facilitate the process of immobilizing contaminants in the soil. This work considers the role of the enhanced nano zero valent iron (nZVI) strategy in the phytostabilization of soil contaminated with potentially toxic elements (PTEs). The experiment was carried out on soil that was highly contaminated with PTEs derived from areas in which metal waste had been stored for many years. The plants used comprised a mixture of grasses-Lolium perenne L. and Festuca rubra L. To determine the effect of the nZVI on the content of PTEs in soil and plants, the samples were analyzed using flame atomic absorption spectrometry (FAAS). The addition of nZVI significantly increased average plant biomass (38%), the contents of Cu (above 2-fold), Ni (44%), Cd (29%), Pb (68%), Zn (44%), and Cr (above 2-fold) in the roots as well as the soil pH. The addition of nZVI, on the other hand, was most effective in reducing the Zn content of soil when compared to the control series. Based on the investigations conducted, the application of nZVI to soil highly contaminated with PTEs is potentially beneficial for the restoration of polluted lands.

SELECTION OF CITATIONS
SEARCH DETAIL
...