Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anticancer Drugs ; 28(9): 977-988, 2017 10.
Article in English | MEDLINE | ID: mdl-28746057

ABSTRACT

Metastasis is the main cause of cancer-related death and requires the development of effective treatments with reduced toxicity and effective anticancer activity. Gallic acid derivatives have shown significant biological properties including antitumoral activity as shown in a previous study with octyl gallate (G8) in vitro. Thus, the aim of this work was to evaluate the antimetastatic effect of free and solid lipid nanoparticle-loaded G8 in mice in a lung metastasis model. Animals inoculated with melanoma cells presented metastasis in lungs, which was significantly inhibited by treatment with G8 and solid lipid nanoparticle-loaded G8, named G8-NVM. However, G8-treated mice showed an increase in several toxicological parameters, which were almost completely circumvented by G8-NVM treatment. This study supports the need for pharmacological studies on new potential medicinal plants to treat cancer and can provide new perspectives on using nanotechnology to improve biological activities while decreasing the chemotherapy toxicological effects of anticancer drugs.


Subject(s)
Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/prevention & control , Gallic Acid/analogs & derivatives , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control , Lipids/administration & dosage , Nanoparticles/administration & dosage , Animals , Chlorocebus aethiops , Female , Gallic Acid/administration & dosage , Gallic Acid/adverse effects , Gallic Acid/chemistry , Lipids/chemistry , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Melanoma, Experimental/drug therapy , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Mice , Nanoparticles/chemistry , Neoplasm Metastasis , Reactive Oxygen Species/metabolism , Vero Cells
2.
Interdiscip Toxicol ; 5(3): 133-40, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23554553

ABSTRACT

We evaluated the toxicity of hepatic, hematological, and oxidative effects of glyphosate-Roundup(®) on male and female albino Swiss mice. The animals were treated orally with either 50 or 500 mg/kg body weight of the herbicide, on a daily basis for a period of 15 days. Distilled water was used as control treatment. Samples of blood and hepatic tissue were collected at the end of the treatment. Hepatotoxicity was monitored by quantitative analysis of the serum enzymes ALT, AST, and γ-GT and renal toxicity by urea and creatinine. We also investigated liver tissues histopathologically. Alterations of hematological parameters were monitored by RBC, WBC, hemoglobin, hematocrit, MCV, MCH, and MCHC. TBARS (thiobarbituric acid reactive substances) and NPSH (non-protein thiols) were analyzed in the liver to assess oxidative damage. Significant increases in the levels of hepatic enzymes (ALT, AST, and γ-GT) were observed for both herbicide treatments, but no considerable differences were found by histological analysis. The hematological parameters showed significant alterations (500 mg/kg body weight) with reductions of RBC, hematocrit, and hemoglobin, together with a significant increase of MCV, in both sexes of mice. In males, there was an important increase in lipid peroxidation at both dosage levels, together with an NPSH decrease in the hepatic tissue, whereas in females significant changes in these parameters were observed only at the higher dose rate. The results of this study indicate that glyphosate-Roundup(®) can promote hematological and hepatic alterations, even at subacute exposure, which could be related to the induction of reactive oxygen species.

SELECTION OF CITATIONS
SEARCH DETAIL
...