Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 160
Filter
1.
J Toxicol Environ Health A ; 87(14): 561-578, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38721998

ABSTRACT

Living conditions are an important modifier of individual health outcomes and may lead to higher allostatic load (AL). However, housing-induced cardiovascular and immune effects contributing to altered environmental responsiveness remain understudied. This investigation was conducted to examine the influence of enriched (EH) versus depleted housing (DH) conditions on cardiopulmonary functions, systemic immune responses, and allostatic load in response to a single wildfire smoke (WS) exposure in mice. Male and female C57BL/6J mice were divided into EH or DH for 22 weeks, and cardiopulmonary assessments measured before and after exposures to either one-hr filtered air (FA) or flaming eucalyptus WS exposure. Male and female DH mice exhibited increased heart rate (HR) and left ventricular mass (LVM), as well as reduced stroke volume and end diastolic volume (EDV) one week following exposure to WS. Female DH mice displayed significantly elevated levels of IL-2, IL-17, corticosterone and hemoglobin A1c (HbA1c) following WS, while female in EH mice higher epinephrine levels were detected. Female mice exhibited higher AL than males with DH, which was potentiated post-WS exposure. Thus, DH increased susceptibility to extreme air pollution in a gender-dependent manner suggesting that living conditions need to be evaluated as a modifier of toxicological responses.


Subject(s)
Housing, Animal , Mice, Inbred C57BL , Smoke , Wildfires , Animals , Female , Male , Mice , Smoke/adverse effects , Allostasis , Air Pollutants , Sex Factors , Heart Rate
2.
bioRxiv ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38645108

ABSTRACT

Macrophages are pivotal innate immune cells which exhibit high phenotypic plasticity and can exist in different polarization states dependent on exposure to external stimuli. Numerous methods have been employed to simulate macrophage polarization states to test their function in vitro. However, limited research has explored whether these polarization methods yield comparable populations beyond key gene, cytokine, and cell surface marker expression. Here, we employ an unbiased comprehensive analysis using data organized through the all RNA-seq and ChIP-seq sample and signature search (ARCHS4) database, which compiles all RNAseq data deposited into the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA). In silico analyses were carried out demonstrating that commonly employed macrophage polarization methods generate distinct macrophage subsets that remained undescribed until now. Our analyses confirm existing knowledge on macrophage polarization, while revealing nuanced differences between M2a and M2c subpopulations, suggesting non-interchangeable stimuli for M2a polarization. Furthermore, we identify divergent gene expression patterns in M1 macrophages following standard polarization protocols, indicating significant subset distinctions. Consequently, equivalence cannot be assumed among polarization regimens for in vitro macrophage studies, particularly in simulating diverse pathogen responses.

3.
Chem Res Toxicol ; 37(5): 791-803, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38652897

ABSTRACT

Burn pits are a method of open-air waste management that was common during military operations in Iraq, Afghanistan, and other regions in Southwest Asia. Veterans returning from deployment have reported respiratory symptoms, potentially from exposure to burn pit smoke, yet comprehensive assessment of such exposure on pulmonary health is lacking. We have previously shown that exposure to condensates from burn pit smoke emissions causes inflammation and cytotoxicity in mice. In this study, we explored the effects of burn pit smoke condensates on human airway epithelial cells (HAECs) to understand their impact on cellular targets in the human lung. HAECs were cultured at the air-liquid interface (ALI) and exposed to burn pit waste smoke condensates (plywood, cardboard, plastic, mixed, and mixed with diesel) generated under smoldering and flaming conditions. Cytotoxicity was evaluated by measuring transepithelial electrical resistance (TEER) and lactate dehydrogenase (LDH) release; toxicity scores (TSs) were quantified for each exposure. Pro-inflammatory cytokine release and modulation of gene expression were examined for cardboard and plastic condensate exposures. Burn pit smoke condensates generated under flaming conditions affected cell viability, with flaming mixed waste and plywood exhibiting the highest toxicity scores. Cardboard and plastic smoke condensates modulated cytokine secretion, with GM-CSF and IL-1ß altered in more than one exposure group. Gene expression of detoxifying enzymes (ALDH1A3, ALDH3A1, CYP1A1, CYP1B1, NQO1, etc.), mucins (MUC5AC, MUC5B), and cytokines was affected by several smoke condensates. Particularly, expression of IL6 was elevated following exposure to all burn pit smoke condensates, and polycyclic aromatic hydrocarbon acenaphthene was positively associated with the IL-6 level in the basolateral media of HAECs. These observations demonstrate that exposure to smoke condensates of materials present in burn pits adversely affects HAECs and that aberrant cytokine secretion and altered gene expression profiles following burn pit material smoke exposure could contribute to the development of airway disease.


Subject(s)
Epithelial Cells , Smoke , Humans , Smoke/adverse effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Cells, Cultured , Cell Survival/drug effects , Cytokines/metabolism , Cell Line , Open Waste Burning
4.
Article in English | MEDLINE | ID: mdl-38687136

ABSTRACT

Background: Recent studies show e-cigarette (EC) users have increased rates of chronic bronchitic symptoms that may be associated with depressed mucociliary clearance (MCC). Little is known about the acute or chronic effects of EC inhalation on in vivo MCC. Methods: In vivo MCC was measured in young adult vapers (n = 5 males, mean age = 21) after controlled inhalation of a radiolabeled (Tc99m sulfur colloid) aerosol. Whole-lung clearance of radiolabeled deposited particles was measured over a 90-minute period for baseline MCC and associated with controlled periodic vaping over the first 60 minutes of MCC measurements. The vaping challenge was administered from a fourth generation box mod EC containing unflavored e-liquid (65% propylene glycol/35% vegetable glycerin, 3 mg/mL freebase nicotine). The challenge was administered at the start of each 10-minute interval of MCC measurements and consisted of 1 puff every 30 seconds for 5 minutes (i.e., 10 puffs for each 10-minute period for a total of 60 puffs during the initial 60 minutes of MCC measurements). Results: Compared with baseline, peripheral lung average clearance (%) over the 90 minutes of MCC measures was enhanced, associated with EC challenge, 12 (±6) versus 24 (±6), respectively (p < 0.05 by Wilcoxon signed-rank test). Conclusions: Acute enhancement of in vivo MCC during EC challenge is contrary to recent studies showing nicotine-associated slowing of ciliary beat and mucus transport at higher nicotine levels than those used here. However, our findings are consistent with an acute increase in fluid volume and mucin secretion to the bronchial airway surface that is likely short lived. Research reported in this publication was supported by the National Institutes of Health R01HL139369 and registered with ClinicalTrials.gov (NCT03700892).

5.
Heliyon ; 10(8): e29675, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38681659

ABSTRACT

Combustion of mixed materials during open air burning of refuse or structural fires in the wildland urban interface produces emissions that worsen air quality, contaminate rivers and streams, and cause poor health outcomes including developmental effects. The zebrafish, a freshwater fish, is a useful model for quickly screening the toxicological and developmental effects of agents in such species and elicits biological responses that are often analogous and predictive of responses in mammals. The purpose of this study was to compare the developmental toxicity of smoke derived from the burning of 5 different burn pit-related material types (plywood, cardboard, plastic, a mixture of the three, and the mixture plus diesel fuel as an accelerant) in zebrafish larvae. Larvae were exposed to organic extracts of increasing concentrations of each smoke 6-to-8-hr post fertilization and assessed for morphological and behavioral toxicity at 5 days post fertilization. To examine chemical and biological determinants of toxicity, responses were related to emissions concentrations of polycyclic hydrocarbons (PAH). Emissions from plastic and the mixture containing plastic caused the most pronounced developmental effects, including mortality, impaired swim bladder inflation, pericardial edema, spinal curvature, tail kinks, and/or craniofacial deformities, although all extracts caused concentration-dependent effects. Plywood, by contrast, altered locomotor responsiveness to light changes to the greatest extent. Some morphological and behavioral responses correlated strongly with smoke extract levels of PAHs including 9-fluorenone. Overall, the findings suggest that material type and emissions chemistry impact the severity of zebrafish developmental toxicity responses to burn pit-related smoke.

7.
Toxicol Sci ; 199(2): 301-315, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38539046

ABSTRACT

Inhalation exposure to plastic incineration emissions (PIEs) is a problem of increasing human relevance, as plastic production and waste creation have drastically increased since mainstream integration during the 20th century. We investigated the effects of PIEs on human nasal epithelial cells (HNECs) to understand if such exposures cause damage and dysfunction to respiratory epithelia. Primary HNECs from male and female donors were cultured at air-liquid interface (ALI), and 16HBE cells were cultured on coverslips. Smoke condensates were generated from incineration of plastic at flaming (640°C) and smoldering (500°C) temperatures, and cells were subsequently exposed to these materials at 5-50 µg/cm2 concentrations. HNECs were assessed for mitochondrial dysfunction and 16HBE cells for glutathione oxidation in real-time analyses. HNEC culture supernatants and total RNA were collected at 4-h postexposure for cytokine and gene expression analysis, and results show that PIEs can acutely induce inflammation, oxidative stress, and mitochondrial dysfunction in HNECs, and that incineration temperature modifies biological responses. Specifically, condensates from flaming and smoldering PIEs significantly increased HNEC secretion of cytokines IL-8, IL-1ß, and IL-13, as well as expression of xenobiotic metabolism pathways and genes such as CYP1A1 and CYP1B1 at 5 and 20 µg/cm2 concentrations. Only 50 µg/cm2 flaming PIEs significantly increased glutathione oxidation in 16HBEs, and decreased respiration and ATP production in HNEC mitochondria. Impact Statement: Our data reveal the impact of incineration temperatures on biological outcomes associated with PIE exposures, emphasizing the importance of temperature as a factor when evaluating respiratory disease associated with PIEs exposure.


Subject(s)
Air Pollutants , Epithelial Cells , Incineration , Inflammation , Oxidative Stress , Humans , Oxidative Stress/drug effects , Female , Male , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Air Pollutants/toxicity , Inflammation/chemically induced , Inflammation/metabolism , Plastics/toxicity , Energy Metabolism/drug effects , Cells, Cultured , Cytokines/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Respiratory Mucosa/drug effects , Respiratory Mucosa/metabolism , Glutathione/metabolism , Smoke/adverse effects , Cytochrome P-450 CYP1B1/genetics , Cytochrome P-450 CYP1B1/metabolism , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Inhalation Exposure/adverse effects
8.
Physiol Rep ; 12(3): e15921, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38302275

ABSTRACT

In this study, we compared 12 mm cell culture inserts with permeable polyester membranes (0.4 µm pores) from two different manufacturers: CELLTREAT® and Corning®. Physical dimensions and masses of the inserts were found to be very similar between the two brands, with CELLTREAT® inserts having a slightly smaller diameter and growth area (11.91 mm; 1.11 cm2 ) compared to Corning® Transwells® (12 mm; 1.13 cm2 ). We compared cell differentiation outcomes of human nasal epithelial cells (HNECs) at air-liquid interface grown on inserts from the two different manufacturers, including trans-epithelial electrical resistance, ciliary beat frequency, ciliated area, and gene expression. HNECs from three male donors were used for all endpoints. No statistically significant differences were observed between paired cultures grown on different brands of insert. In conclusion, these inserts are comparable for use with airway epithelial cell model systems and likely do not impact cellular differentiation or cell culture quality.


Subject(s)
Cell Culture Techniques , Epithelial Cells , Humans , Male , Cell Culture Techniques/methods , Epithelial Cells/metabolism , Respiratory System , Cells, Cultured , Cell Differentiation
9.
BMJ Open ; 14(1): e074655, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38238060

ABSTRACT

INTRODUCTION: Exposure to particulate matter (PM) pollution has been associated with lower lung function in adults with chronic obstructive pulmonary disease (COPD). Patients with eosinophilic COPD have been found to have higher levels of airway inflammation, greater responsiveness to anti-inflammatory steroid inhalers and a greater lung function response to PM pollution exposure compared with those with lower eosinophil levels. This study will evaluate if reducing home PM exposure by high-efficiency particulate air (HEPA) air filtration improves respiratory health in eosinophilic COPD. METHODS AND ANALYSIS: The Air Purification for Eosinophilic COPD Study (APECS) is a double-blinded randomised placebo-controlled trial that will enrol 160 participants with eosinophilic COPD living in the area of Boston, Massachusetts. Real and sham air purifiers will be placed in the bedroom and living rooms of the participants in the intervention and control group, respectively, for 12 months. The primary trial outcome will be the change in forced expiratory volume in 1 s (FEV1). Lung function will be assessed twice preintervention and three times during the intervention phase (at 7 days, 6 months and 12 months postrandomisation). Secondary trial outcomes include changes in (1) health status by St. George's Respiratory Questionnaire; (2) respiratory symptoms by Breathlessness, Cough and Sputum Scale (BCSS); and (3) 6-Minute Walk Test (6MWT). Inflammatory mediators were measured in the nasal epithelial lining fluid (NELF). Indoor PM will be measured in the home for the week preceding each study visit. The data will be analysed to contrast changes in outcomes in the intervention and control groups using a repeated measures framework. ETHICS AND DISSEMINATION: Ethical approval was obtained from the Institutional Review Board of Beth Israel Deaconess Medical Centre (protocol #2019P0001129). The results of the APECS trial will be presented at scientific conferences and published in peer-reviewed journals. TRIAL REGISTRATION: NCT04252235. Version: October 2023.


Subject(s)
Asthma , Pulmonary Disease, Chronic Obstructive , Adult , Humans , Asthma/complications , Research Design , Dyspnea/complications , Dust , Particulate Matter , Quality of Life , Randomized Controlled Trials as Topic
10.
Toxicol Sci ; 198(2): 157-168, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38243717

ABSTRACT

Energy-based surgical instruments produce surgical smoke, which contains harmful byproducts, such as polycyclic aromatic hydrocarbons, volatile organic compounds, particulate matter, and viable microorganisms. The research setting has shifted from the laboratory to the operating room. However, significant heterogeneity in the methods of detection and placement of samplers, diversity in the tissue operated on, and types of surgeries tested has resulted in variability in detected levels and composition of surgical smoke. State regulation limiting surgical smoke exposure through local evacuators is expanding but has yet to reach the national regulatory level. However, most studies have not shown levels above standard established limits but relatively short bursts of high concentrations of these harmful by-products. This review highlights the limitations of the current research and unsupported conclusions while also suggesting further areas of interest that need more focus to improve Occupational Safety and Health Administration guidelines.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Volatile Organic Compounds , Smoke/adverse effects , Particulate Matter , Operating Rooms , Volatile Organic Compounds/analysis
11.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L83-L97, 2024 01 01.
Article in English | MEDLINE | ID: mdl-38084400

ABSTRACT

Macrophage populations exist on a spectrum between the proinflammatory M1 and proresolution M2 states and have demonstrated the ability to reprogram between them after exposure to opposing polarization stimuli. Particulate matter (PM) has been repeatedly linked to worsening morbidity and mortality following respiratory infections and has been demonstrated to modify macrophage function and polarization. The purpose of this study was to determine whether diesel exhaust particles (DEP), a key component of airborne PM, would demonstrate polarization state-dependent effects on human monocyte-derived macrophages (hMDMs) and whether DEP would modify macrophage reprogramming. CD14+CD16- monocytes were isolated from the blood of healthy human volunteers and differentiated into macrophages with macrophage colony-stimulating factor (M-CSF). Resulting macrophages were left unpolarized or polarized into the proresolution M2 state before being exposed to DEP, M1-polarizing conditions (IFN-γ and LPS), or both and tested for phagocytic function, secretory profile, gene expression patterns, and bioenergetic properties. Contrary to previous reports, we observed a mixed M1/M2 phenotype in reprogrammed M2 cells when considering the broader range of functional readouts. In addition, we determined that DEP exposure dampens phagocytic function in all polarization states while modifying bioenergetic properties in M1 macrophages preferentially. Together, these data suggest that DEP exposure of reprogrammed M2 macrophages results in a highly inflammatory, highly energetic subpopulation of macrophages that may contribute to the poor health outcomes following PM exposure during respiratory infections.NEW & NOTEWORTHY We determined that reprogramming M2 macrophages in the presence of diesel exhaust particles (DEP) results in a highly inflammatory mixed M1/M2 phenotype. We also demonstrated that M1 macrophages are particularly vulnerable to particulate matter (PM) exposure as seen by dampened phagocytic function and modified bioenergetics. Our study suggests that PM causes reprogrammed M2 macrophages to become a highly energetic, highly secretory subpopulation of macrophages that may contribute to negative health outcomes observed in humans after PM exposure.


Subject(s)
Respiratory Tract Infections , Vehicle Emissions , Humans , Vehicle Emissions/toxicity , Macrophages/metabolism , Phenotype , Cell Differentiation , Particulate Matter/toxicity
12.
Res Sq ; 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38045266

ABSTRACT

Neutrophils play a crucial role in the body's defense against respiratory pathogens, and dysregulation is linked to airway diseases. The study presented here explores the association between demographic factors (age, BMI, and sex) and functional phenotypes (oxidative burst and bioenergetics) of neutrophils. We measured PMA-stimulated oxidative burst (Seahorse XF) and phagocytosis (pHrodo red S. aureus) of human peripheral blood neutrophils and determined whether there were significant demographic associations with cellular function. There were no significant associations between neutrophil oxidative burst bioenergetic parameters or phagocytosis and BMI or age. However, our data revealed sexual dimorphism in neutrophil phagocytosis, with males exhibiting significantly higher phagocytic capacity than females. Additionally, phagocytic capacity and bioenergetic parameters were correlated in males but not in females. The study indicates potential variations in neutrophil activation pathways between males and female and emphasizes the importance of considering sex as a biological variable in respiratory host defense research.

13.
Inhal Toxicol ; 35(13-14): 324-332, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38054423

ABSTRACT

OBJECTIVE: Due to recent increases in the use of vaping devices, there is a high demand for research addressing the respiratory health effects of vaping products. Given the constantly changing nature of the vaping market with new devices, flavors, metals, and other chemicals rapidly emerging, there is a need for inexpensive and highly adaptable vaping device exposure systems. Here, we describe the design and validation of a novel in vitro aerosol exposure system for toxicity testing of vaping devices. MATERIALS AND METHODS: We developed an inexpensive, open-source in vitro vaping device exposure system that produces even deposition, can be adapted for different vaping devices, and allows for experiments to be performed under physiological conditions. The system was then validated with deposition testing and a representative exposure with human bronchial epithelial cells (hBECs). RESULTS: The Vaping Product Exposure System (VaPES) produced sufficient and uniform deposition for dose-response studies and was precise enough to observe biological responses to vaping exposures. VaPES was adapted to work with both pod and cartridge-based vaping devices. CONCLUSION: We have designed and validated a novel vaping device exposure system that will eliminate the need to use high-cost commercial exposure systems, lowering the barrier to entry of physiologically relevant vaping studies.


Subject(s)
Electronic Nicotine Delivery Systems , Vaping , Humans , Vaping/adverse effects , Aerosols , Metals
14.
ERJ Open Res ; 9(6)2023 Nov.
Article in English | MEDLINE | ID: mdl-38020565

ABSTRACT

The study by Miladet al. presents data addressing how inhalation of cannabis smoke affects influenza infections in mice, and uncovers responses that are different in male and female mice https://bit.ly/46qpTis.

15.
J Allergy Clin Immunol Glob ; 2(4): 100129, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37781659

ABSTRACT

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccine-induced systemic antibody profiles are well characterized; however, little is known about whether intranasal mucosal antibodies are induced or can neutralize virus in response to mRNA vaccination. Objective: We sought to evaluate intranasal mucosal antibody production with SARS-CoV-2 mRNA vaccination. Methods: SARS-CoV-2-specific IgG and IgA concentrations and neutralization activity from sera and nasal mucosa via nasal epithelial lining fluid (NELF) collection were measured in SARS-CoV-2 mRNA-vaccinated healthy volunteers (N = 29) by using multiplex immunoassays. Data were compared before and after vaccination, between mRNA vaccine brands, and by sex. Results: SARS-CoV-2 mRNA vaccination induced an intranasal immune response characterized by neutralizing mucosal antibodies. IgG antibodies displayed greater Spike 1 (S1) binding specificity than did IgA in serum and nasal mucosa. Nasal antibodies displayed greater neutralization activity against the receptor-binding domain than serum. Spikevax (Moderna)-vaccinated individuals displayed greater SARS-CoV-2-specific IgG and IgA antibody concentrations than did Comirnaty (BioNTech/Pfizer)-vaccinated individuals in their serum and nasal epithelial lining fluid. Sex-dependent differences in antibody response were not observed. Conclusion: SARS-CoV-2 mRNA vaccination induces a robust systemic and intranasal antibody production with neutralizing capacity. Spikevax vaccinations elicit a greater antibody response than does Comirnaty vaccination systemically and intranasally.

16.
Respir Res ; 24(1): 187, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37443038

ABSTRACT

As the public health burden of air pollution continues to increase, new strategies to mitigate harmful health effects are needed. Dietary antioxidants have previously been explored to protect against air pollution-induced lung injury producing inconclusive results. Inhaled (pulmonary or nasal) administration of antioxidants presents a more promising approach as it could directly increase antioxidant levels in the airway surface liquid (ASL), providing protection against oxidative damage from air pollution. Several antioxidants have been shown to exhibit antioxidant, anti-inflammatory, and anti-microbial properties in in vitro and in vivo models of air pollution exposure; however, little work has been done to translate these basic research findings into practice. This narrative review summarizes these findings and data from human studies using inhaled antioxidants in response to air pollution, which have produced positive results, indicating further investigation is warranted. In addition to human studies, cell and murine studies should be conducted using more relevant models of exposure such as air-liquid interface (ALI) cultures of primary cells and non-aqueous apical delivery of antioxidants and pollutants. Inhalation of antioxidants shows promise as a protective intervention to prevent air pollution-induced lung injury and exacerbation of existing lung disease.


Subject(s)
Air Pollutants , Air Pollution , Lung Diseases , Lung Injury , Humans , Mice , Animals , Antioxidants/pharmacology , Air Pollution/adverse effects , Air Pollution/analysis , Lung Diseases/chemically induced , Lung Diseases/prevention & control , Lung , Air Pollutants/adverse effects
17.
Front Toxicol ; 5: 1171175, 2023.
Article in English | MEDLINE | ID: mdl-37304253

ABSTRACT

Toxicology research has rapidly evolved, leveraging increasingly advanced technologies in high-throughput approaches to yield important information on toxicological mechanisms and health outcomes. Data produced through toxicology studies are consequently becoming larger, often producing high-dimensional data. These types of data hold promise for imparting new knowledge, yet inherently have complexities causing them to be a rate-limiting element for researchers, particularly those that are housed in "wet lab" settings (i.e., researchers that use liquids to analyze various chemicals and biomarkers as opposed to more computationally focused, "dry lab" researchers). These types of challenges represent topics of ongoing conversation amongst our team and researchers in the field. The aim of this perspective is to i) summarize hurdles in analyzing high-dimensional data in toxicology that require improved training and translation for wet lab researchers, ii) highlight example methods that have aided in translating data analysis techniques to wet lab researchers; and iii) describe challenges that remain to be effectively addressed, to date, in toxicology research. Specific aspects include methodologies that could be introduced to wet lab researchers, including data pre-processing, machine learning, and data reduction. Current challenges discussed include model interpretability, study biases, and data analysis training. Example efforts implemented to translate these data analysis techniques are also mentioned, including online data analysis resources and hands-on workshops. Questions are also posed to continue conversation in the toxicology community. Contents of this perspective represent timely issues broadly occurring in the fields of bioinformatics and toxicology that require ongoing dialogue between wet and dry lab researchers.

18.
Environ Health ; 22(1): 48, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37370168

ABSTRACT

Wildfire smoke is associated with short-term respiratory outcomes including asthma exacerbation in children. As investigations into developmental wildfire smoke exposure on children's longer-term respiratory health are sparse, we investigated associations between developmental wildfire smoke exposure and first use of respiratory medications. Prescription claims from IBM MarketScan Commercial Claims and Encounters database were linked with wildfire smoke plume data from NASA satellites based on Metropolitan Statistical Area (MSA). A retrospective cohort of live infants (2010-2016) born into MSAs in six western states (U.S.A.), having prescription insurance, and whose birthdate was estimable from claims data was constructed (N = 184,703); of these, gestational age was estimated for 113,154 infants. The residential MSA, gestational age, and birthdate were used to estimate average weekly smoke exposure days (smoke-day) for each developmental period: three trimesters, and two sequential 12-week periods post-birth. Medications treating respiratory tract inflammation were classified using active ingredient and mode of administration into three categories:: 'upper respiratory', 'lower respiratory', 'systemic anti-inflammatory'. To evaluate associations between wildfire smoke exposure and medication usage, Cox models associating smoke-days with first observed prescription of each medication category were adjusted for infant sex, birth-season, and birthyear with a random intercept for MSA. Smoke exposure during postnatal periods was associated with earlier first use of upper respiratory medications (1-12 weeks: hazard ratio (HR) = 1.094 per 1-day increase in average weekly smoke-day, 95%CI: (1.005,1.191); 13-24 weeks: HR = 1.108, 95%CI: (1.016,1.209)). Protective associations were observed during gestational windows for both lower respiratory and systemic anti-inflammatory medications; it is possible that these associations may be a consequence of live-birth bias. These findings suggest wildfire smoke exposure during early postnatal developmental periods impact subsequent early life respiratory health.


Subject(s)
Air Pollutants , Respiratory Tract Diseases , Wildfires , Humans , Infant , Air Pollutants/adverse effects , Environmental Exposure/adverse effects , Particulate Matter , Retrospective Studies , Smoke/adverse effects , Male , Female
19.
Ecotoxicol Environ Saf ; 259: 115069, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37244199

ABSTRACT

Exposure to particulate matter (PM) has been associated with increased hospital admissions for influenza. Airway epithelial cells are a primary target for inhaled environmental insults including fine PM (PM2.5) and influenza viruses. The potentiation of PM2.5 exposure on the effects of influenza virus on airway epithelial cells has not been adequately elucidated. In this study, the effects of PM2.5 exposure on influenza virus (H3N2) infection and downstream modulation of inflammation and antiviral immune response were investigated using a human bronchial epithelial cell line, BEAS-2B. The results showed that PM2.5 exposure alone increased the production of pro-inflammatory cytokines including interleukin-6 (IL-6) and IL-8 but decreased the production of the antiviral cytokine interferon-ß (IFN-ß) in BEAS-2B cells while H3N2 exposure alone increased the production of IL-6, IL-8, and IFN-ß. Importantly, prior exposure to PM2.5 enhanced subsequent H3N2 infectivity, expression of viral hemagglutinin protein, as well as upregulation of IL-6 and IL-8, but reduced H3N2-induced IFN-ß production. Pre-treatment with a pharmacological inhibitor of nuclear factor-κB (NF-κB) suppressed pro-inflammatory cytokine production induced by PM2.5, H3N2, as well as PM2.5-primed H3N2 infection. Moreover, antibody-mediated neutralization of Toll-like receptor 4 (TLR4) blocked cytokine production triggered by PM2.5 or PM2.5-primed H3N2 infection, but not H3N2 alone. Taken together, exposure to PM2.5 alters H3N2-induced cytokine production and markers of replication in BEAS-2B cells, which in turn are regulated by NF-κB and TLR4.


Subject(s)
Influenza, Human , Orthomyxoviridae , Humans , Particulate Matter/metabolism , Toll-Like Receptor 4/metabolism , Interleukin-6/metabolism , NF-kappa B/metabolism , Interleukin-8/metabolism , Epithelial Cells , Cytokines/metabolism , Orthomyxoviridae/metabolism , Antiviral Agents/metabolism , Antiviral Agents/pharmacology
20.
Tumori ; 109(6): NP11-NP13, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37165581

ABSTRACT

Electronic cigarette, or vaping, product use-associated lung injury (EVALI) is an increasingly recognized entity with the potential for severe pulmonary toxicity. We present the case of a young man first evaluated at a tertiary care center in the United States in 2019 with newly diagnosed testicular cancer with acute respiratory failure, which was initially attributed to possible metastatic disease but eventually determined to be related to EVALI. This case highlights the clinical features of EVALI, the potential diagnostic dilemma that can arise with EVALI when occurring in the setting of malignancy and the importance of inquiring about vaping use among patients with malignancy, especially in adolescents and young adults.


Subject(s)
Electronic Nicotine Delivery Systems , Lung Injury , Neoplasms, Germ Cell and Embryonal , Testicular Neoplasms , Vaping , Male , Adolescent , Young Adult , Humans , United States , Lung Injury/diagnosis , Lung Injury/etiology , Lung Injury/therapy , Testicular Neoplasms/diagnosis , Testicular Neoplasms/etiology , Vaping/adverse effects , Neoplasms, Germ Cell and Embryonal/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...