Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters











Publication year range
1.
Environ Int ; 181: 108256, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37862862

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are a group of xenobiotics that are widely distributed throughout the aquatic environment. Many PFAS are possible thyroid hormone (TH) system disrupting compounds, because they have the capacity to -amongst other- inhibit the TH thyroxine (T4) from binding to its transport protein transthyretin (TTR). This study investigated the occurrence of TH-displacing activity in the Dutch water cycle, and more specifically, the contribution of PFAS to this effect. Over one year of monitoring data of 29 PFAS (linear and branched) showed the continuous presence of PFAS in drinking waters and their surface water sources. Secondly, the FITC-T4 and TTR-TRß-CALUX bioassays were mutually compared using positive (HPLC-grade water spiked with PFOA) and negative control samples (HPLC-grade water), as well as relative potency factors (RPFs) of up to 20 PFAS congeners. Both assays were found to be suitable for measuring TH-displacing activity in water samples. As a third aim, a field study was performed in the Dutch water cycle that was comprised of samples from drinking water, surface water, PFAS contaminated sites, and 2 wastewater treatment plants. All samples were analyzed with 1. chemical analysis for 29 PFAS, 2. the FITC-T4 bioassay, and 3. the TTR-TRß-CALUX bioassay. The bioassays mutually showed good correlation (R2 0.85). Bioanalytical equivalent concentrations (BEQ) based on chemically-determined concentrations and RPFs (BEQchem) revealed that analyzed PFAS only explained ≤4.1 % of their activity in water extracts measured by both bioassays (BEQbio). This indicated that as yet unknown compounds contribute to the majority of the measured TH-displacing activity. Moreover, water treatment processes (e.g. DW production from SW) showed a larger contribution of target PFAS to the BEQbio. This could be a first lead to identify unknown compounds that contribute to this activity, and as such, enable the assessment of possible risks associated by the occurrence of TH-displacing activity in water.


Subject(s)
Drinking Water , Fluorocarbons , Water Pollutants, Chemical , Fluorescein-5-isothiocyanate , Thyroid Hormones , Thyroid Gland , Biological Assay , Thyroid Hormone Receptors beta , Water Pollutants, Chemical/toxicity
2.
Clin Biomech (Bristol, Avon) ; 94: 105609, 2022 04.
Article in English | MEDLINE | ID: mdl-35247697

ABSTRACT

BACKGROUND: Progression of plantar flexor weakness in neuromuscular diseases is usually monitored by muscle strength measurements, although they poorly relate to muscle function during walking. Pathophysiological changes such as intramuscular adipose tissue affect dynamic muscle function independent from isometric strength. Diffusion tensor imaging and T2 imaging are quantitative MRI measures reflecting muscular pathophysiological changes, and are therefore potential biomarkers to monitor plantar flexor functioning during walking in people with neuromuscular diseases. METHODS: In fourteen individuals with plantar flexor weakness diffusion tensor imaging and T2 scans of the plantar flexors were obtained, and the diffusion indices fractional anisotropy and mean diffusivity calculated. With a dynamometer, maximal isometric plantar flexor strength was measured. 3D gait analysis was used to assess maximal ankle moment and power during walking. FINDINGS: Fractional anisotropy, mean diffusivity and T2 relaxation time all moderately correlated with maximal plantar flexor strength (r > 0.512). Fractional anisotropy and mean diffusivity were not related with ankle moment or power (r < 0.288). T2 relaxation time was strongly related to ankle moment (r = -0.789) and ankle power (r = -0.798), and moderately related to maximal plantar flexor strength (r < 0.600). INTERPRETATION: In conclusion, T2 relaxation time, indicative of multiple pathophysiological changes, was strongly related to plantar flexor function during walking, while fractional anisotropy and mean diffusivity, indicative of fiber size, only related to maximal plantar flexor strength. This indicates that these measures may be suitable to monitor muscle function and gain insights into the pathophysiological changes underlying a poor plantar flexor functioning during gait in people with neuromuscular diseases.


Subject(s)
Ankle , Neuromuscular Diseases , Diffusion Tensor Imaging , Humans , Magnetic Resonance Imaging , Muscles , Neuromuscular Diseases/diagnostic imaging , Walking/physiology
3.
Rev Sci Instrum ; 91(2): 023507, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32113444

ABSTRACT

The Charge Exchange Recombination Spectroscopy (CXRS) diagnostic has become a routine diagnostic on almost all major high temperature fusion experimental devices. For the optimized stellarator Wendelstein 7-X (W7-X), a highly flexible and extensive CXRS diagnostic has been built to provide high-resolution local measurements of several important plasma parameters using the recently commissioned neutral beam heating. This paper outlines the design specifics of the W7-X CXRS system and gives examples of the initial results obtained, including typical ion temperature profiles for several common heating scenarios, toroidal flow and radial electric field derived from velocity measurements, beam attenuation via beam emission spectra, and normalized impurity density profiles under some typical plasma conditions.

4.
J Appl Physiol (1985) ; 124(6): 1403-1412, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29420150

ABSTRACT

In this study, we investigate adaptations in muscle oxidative capacity, fiber size and oxygen supply capacity in team-sport athletes after six repeated-sprint sessions in normobaric hypoxia or normoxia combined with 14 days of chronic normobaric hypoxic exposure. Lowland elite field hockey players resided at simulated altitude (≥14 h/day at 2,800-3,000 m) and performed regular training plus six repeated-sprint sessions in normobaric hypoxia (3,000 m; LHTLH; n = 6) or normoxia (0 m; LHTL; n = 6) or lived at sea level with regular training only (LLTL; n = 6). Muscle biopsies were obtained from the m. vastus lateralis before (pre), immediately after (post-1), and 3 wk after the intervention (post-2). Changes over time between groups were compared, including likelihood of the effect size (ES). Succinate dehydrogenase activity in LHTLH largely increased from pre to post-1 (~35%), likely more than LHTL and LLTL (ESs = large-very large), and remained elevated in LHTLH at post-2 (~12%) vs. LHTL (ESs = moderate-large). Fiber cross-sectional area remained fairly similar in LHTLH from pre to post-1 and post-2 but was increased at post-1 and post-2 in LHTL and LLTL (ES = moderate-large). A unique observation was that LHTLH and LHTL, but not LLTL, improved their combination of fiber size and oxidative capacity. Small-to-moderate differences in oxygen supply capacity (i.e., myoglobin and capillarization) were observed between groups. In conclusion, elite team-sport athletes substantially increased their skeletal muscle oxidative capacity, while maintaining fiber size, after only 14 days of chronic hypoxic residence combined with six repeated-sprint training sessions in hypoxia. NEW & NOTEWORTHY Our novel findings show that elite team-sport athletes were able to substantially increase the skeletal muscle oxidative capacity in type I and II fibers (+37 and +32%, respectively), while maintaining fiber size after only 14 days of chronic hypoxic residence combined with six repeated-sprint sessions in hypoxia. This increase in oxidative capacity was superior to groups performing chronic hypoxic residence with repeated sprints in normoxia and residence at sea level with regular training only.


Subject(s)
Adaptation, Physiological , Hypoxia/metabolism , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Adult , Athletes , Humans , Male , Muscle, Skeletal/cytology , Running/physiology , Young Adult
5.
Rev Sci Instrum ; 87(11): 11E503, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910319

ABSTRACT

A photo-elastic modulator based 25-chord motional Stark effect (MSE) diagnostic has been successfully developed and commissioned in Korea Superconducting Tokamak Advanced Research. The diagnostic measures the radial magnetic pitch angle profile of the Stark splitting of a D-alpha line at 656.1 nm by the electric field associated with the neutral deuterium heating beam. A tangential view of the neutral beam provides a good spatial resolution of 1-3 cm for covering the major radius from 1.74 m to 2.28 m, and the time resolution is achieved at 10 ms. An in-vessel calibration before the vacuum closing as well as an in situ calibration during the tokamak operation was performed by means of specially designed polarized lighting sources. In this work, we present the final design of the installed MSE diagnostic and the first results of the commissioning.

6.
Pflugers Arch ; 468(10): 1697-707, 2016 10.
Article in English | MEDLINE | ID: mdl-27572699

ABSTRACT

A major problem in chronic heart failure is the inability of hypertrophied cardiomyocytes to maintain the required power output. A Hill-type oxygen diffusion model predicts that oxygen supply is limiting in hypertrophied cardiomyocytes at maximal rates of oxygen consumption and that this limitation can be reduced by increasing the myoglobin (Mb) concentration. We explored how cardiac hypertrophy, oxidative capacity, and Mb expression in right ventricular cardiomyocytes are regulated at the transcriptional and translational levels in an early stage of experimental pulmonary hypertension, in order to identify targets to improve the oxygen supply/demand ratio. Male Wistar rats were injected with monocrotaline to induce pulmonary hypertension (PH) and right ventricular heart failure. The messenger RNA (mRNA) expression levels per nucleus of growth factors insulin-like growth factor-1Ea (IGF-1Ea) and mechano growth factor (MGF) were higher in PH than in healthy controls, consistent with a doubling in cardiomyocyte cross-sectional area (CSA). Succinate dehydrogenase (SDH) activity was unaltered, indicating that oxidative capacity per cell increased. Although the Mb protein concentration was unchanged, Mb mRNA concentration was reduced. However, total RNA per nucleus was about threefold higher in PH rats versus controls, and Mb mRNA content expressed per nucleus was similar in the two groups. The increase in oxidative capacity without an increase in oxygen supply via Mb-facilitated diffusion caused a doubling of the critical extracellular oxygen tension required to prevent hypoxia (PO2crit). We conclude that Mb mRNA expression is not increased during pressure overload-induced right ventricular hypertrophy and that the increase in myoglobin content per myocyte is likely due to increased translation. We conclude that increasing Mb mRNA expression may be beneficial in the treatment of experimental PH.


Subject(s)
Cardiomegaly/metabolism , Hypertension, Pulmonary/metabolism , Myocytes, Cardiac/metabolism , Myoglobin/metabolism , Animals , Cardiomegaly/etiology , Cells, Cultured , Heart Ventricles/metabolism , Hypertension, Pulmonary/complications , Insulin-Like Growth Factor I/metabolism , Male , Myocytes, Cardiac/pathology , Myoglobin/genetics , Oxygen/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Wistar , Succinate Dehydrogenase/metabolism
7.
J Cell Physiol ; 231(11): 2517-28, 2016 11.
Article in English | MEDLINE | ID: mdl-27018098

ABSTRACT

An adequate vitamin D status is essential to optimize muscle strength. However, whether vitamin D directly reduces muscle fiber atrophy or stimulates muscle fiber hypertrophy remains subject of debate. A mechanism that may affect the role of vitamin D in the regulation of muscle fiber size is the local conversion of 25(OH)D to 1,25(OH)2 D by 1α-hydroxylase. Therefore, we investigated in a murine C2C12 myoblast culture whether both 1,25(OH)2 D3 and 25(OH)D3 affect myoblast proliferation, differentiation, and myotube size and whether these cells are able to metabolize 25(OH)D3 and 1,25(OH)2 D3 . We show that myoblasts not only responded to 1,25(OH)2 D3 , but also to the precursor 25(OH)D3 by increasing their VDR mRNA expression and reducing their proliferation. In differentiating myoblasts and myotubes 1,25(OH)2 D3 as well as 25(OH)D3 stimulated VDR mRNA expression and in myotubes 1,25(OH)2 D3 also stimulated MHC mRNA expression. However, this occurred without notable effects on myotube size. Moreover, no effects on the Akt/mTOR signaling pathway as well as MyoD and myogenin mRNA levels were observed. Interestingly, both myoblasts and myotubes expressed CYP27B1 and CYP24 mRNA which are required for vitamin D3 metabolism. Although 1α-hydroxylase activity could not be shown in myotubes, after treatment with 1,25(OH)2 D3 or 25(OH)D3 myotubes showed strongly elevated CYP24 mRNA levels compared to untreated cells. Moreover, myotubes were able to convert 25(OH)D3 to 24R,25(OH)2 D3 which may play a role in myoblast proliferation and differentiation. These data suggest that skeletal muscle is not only a direct target for vitamin D3 metabolites, but is also able to metabolize 25(OH)D3 and 1,25(OH)2 D3 . J. Cell. Physiol. 231: 2517-2528, 2016. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.


Subject(s)
Calcifediol/pharmacology , Calcitriol/pharmacology , Cell Differentiation/drug effects , Muscle Fibers, Skeletal/pathology , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/metabolism , Animals , Cell Differentiation/genetics , Cell Line , Cell Proliferation/drug effects , Cell Size/drug effects , Hypertrophy , Mice , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Myoblasts/cytology , Myoblasts/metabolism , Myogenin/genetics , Myogenin/metabolism , Myosin Heavy Chains/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism , Ribosomal Protein S6/metabolism
8.
Exp Physiol ; 100(11): 1331-41, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26388513

ABSTRACT

NEW FINDINGS: What is the central question of this study? Do the contractile properties of single muscle fibres differ between body-builders, power athletes and control subjects? What is the main finding and its importance? Peak power normalized for muscle fibre volume in power athletes is higher than in control subjects. Compared with control subjects, maximal isometric tension (normalized for muscle fibre cross-sectional area) is lower in body-builders. Although this difference may be caused in part by an apparent negative effect of hypertrophy, these results indicate that the training history of power athletes may increase muscle fibre quality, whereas body-building may be detrimental. We compared muscle fibre contractile properties of biopsies taken from the vastus lateralis of 12 body-builders (BBs; low- to moderate-intensity high-volume resistance training), six power athletes (PAs; high-intensity, low-volume combined with aerobic training) and 14 control subjects (Cs). Maximal isotonic contractions were performed in single muscle fibres, typed with SDS-PAGE. Fibre cross-sectional area was 67 and 88% (P < 0.01) larger in BBs than in PAs and Cs, respectively, with no significant difference in fibre cross-sectional area between PAs and Cs. Fibres of BBs and PAs developed a higher maximal isometric tension (32 and 50%, respectively, P < 0.01) than those of Cs. The specific tension of BB fibres was 62 and 41% lower than that of PA and C fibres (P < 0.05), respectively. Irrespective of fibre type, the peak power (PP) of PA fibres was 58% higher than that of BB fibres (P < 0.05), whereas BB fibres, despite considerable hypertrophy, had similar PP to the C fibres. This work suggests that high-intensity, low-volume resistance training with aerobic exercise improves PP, while low- to moderate-intensity high-volume resistance training does not affect PP and results in a reduction in specific tension. We postulate that the decrease in specific tension is caused by differences in myofibrillar density and/or post-translational modifications of contractile proteins.


Subject(s)
Athletes , Muscle Contraction/physiology , Muscle Fibers, Skeletal/physiology , Resistance Training , Adult , Exercise , Humans , Hypertrophy , Male , Quadriceps Muscle , Weight Lifting/physiology , Young Adult
9.
Rev Sci Instrum ; 85(11): 11D827, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25430240

ABSTRACT

The motional Stark effect (MSE) diagnostic is used to measure the radial magnetic pitch angle profile in neutral beam heated plasmas. This information is used to calculate the safety factor, q, with magnetic equilibrium reconstruction codes such as EFIT. The MSE diagnostic is important during active shaping of the q profile to optimize confinement and stability, and it has become a key diagnostic in high performance tokamaks. A multichord photo-elastic modulator (PEM) based MSE system is being developed for a real-time plasma current profile control in Korea Superconducting Tokamak Advanced Research (KSTAR). The PEM-based approach is a standard method that measures the polarization direction of a single Stark line with narrow tunable bandpass filters. A tangential view of the heating beam provides good spatial resolution of 1-3 cm, which provides an opportunity to install 25 spatial channels spanning the major radius from 1.74 m to 2.84 m. Application of real-time control is a long-term technical goal after commissioning the diagnostic in KSTAR, which is expected in 2015. In this paper, we describe the design of this newly-constructed multichord MSE diagnostic in KSTAR.

10.
Rev Sci Instrum ; 83(10): 10D515, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23126857

ABSTRACT

A feasibility study for the use of core charge exchange recombination spectroscopy on ITER has shown that accurate measurements on the helium ash require a spectrometer with a high etendue of 1mm(2)sr to comply with the measurement requirements [S. Tugarinov et al., Rev. Sci. Instrum. 74, 2075 (2003)]. To this purpose such an instrument has been developed consisting of three separate wavelength channels (to measure simultaneously He/Be, C/Ne, and H/D/T together with the Doppler shifted direct emission of the diagnostic neutral beam, the beam emission (BES) signal), combining high dispersion (0.02 nm/pixel), sufficient resolution (0.2 nm), high efficiency (55%), and extended wavelength range (14 nm) at high etendue. The combined measurement of the BES along the same sightline within a third wavelength range provides the possibility for in situ calibration of the charge eXchange recombination spectroscopy signals. In addition, the option is included to use the same instrument for measurements of the fast fluctuations of the beam emission intensity up to 2 MHz, with the aim to study MHD activity.

11.
Rev Sci Instrum ; 83(10): 10D519, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23126860

ABSTRACT

Investigation of impurity transport properties in tokamak plasmas is essential and a diagnostic that can provide information on the impurity content is required. Combining charge exchange recombination spectroscopy (CXRS) and beam emission spectroscopy (BES), absolute radial profiles of impurity densities can be obtained from the CXRS and BES intensities, electron density and CXRS and BES emission rates, without requiring any absolute calibration of the spectra. The technique is demonstrated here with absolute impurity density radial profiles obtained in TEXTOR plasmas, using a high efficiency charge exchange spectrometer with high etendue, that measures the CXRS and BES spectra along the same lines-of-sight, offering an additional advantage for the determination of absolute impurity densities.

12.
J Musculoskelet Neuronal Interact ; 11(4): 286-97, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22130137

ABSTRACT

It has been suggested that the number of myonuclei in a muscle fibre changes in proportion to the change in fibre size, resulting in a constant myonuclear domain size, defined as the cytoplasmic volume per myonucleus. The myonuclear domain size varies, however, between fibre types and is inversely related with the oxidative capacity of a fibre. Overall, the observations of an increase in myonuclear domain size during both maturational growth and overload-induced hypertrophy, and the decrease in myonuclear domain size during disuse- and ageing-associated muscle atrophy suggest that the concept of a constant myonuclear domain size needs to be treated cautiously. It also suggests that only when the myonuclear domain size exceeds a certain threshold during growth or overload-induced hypertrophy acquisition of new myonuclei is required for further fibre hypertrophy.


Subject(s)
Cell Nucleus/physiology , Cell Nucleus/ultrastructure , Muscle, Skeletal/physiology , Muscle, Skeletal/ultrastructure , Animals , Humans
13.
J Physiol Pharmacol ; 62(1): 111-8, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21451216

ABSTRACT

Vitamin D deficiency is associated with muscle weakness. It is unknown, however, how supra-physiological levels of vitamin D affect skeletal muscle. To investigate the effects of increased serum vitamin D (1,25 (OH)2D3 or 1,25D) levels on the contractile properties of the medial gastrocnemius muscle, adult and old female Fischer344 x Brown Norway F1 rats were orally treated with vehicle or the vitamin D analogue alfacalcidol for 1 or 6 weeks. Alfacalcidol treatment resulted in elevated 1,25D serum levels. This was accompanied by hypercalcaemia and a reduction in body mass, the latter largely attributable to a reduced food intake. However, kidney function, as reflected by normal creatinine serum levels, as well as heart mass were unaffected. The 17% reduction in maximal isometric force and power was explicable by a similar loss of muscle mass. The force-frequency relationship of the 6-week-treated old rats was shifted to the left, but neither the shape of the force-velocity relationship nor the fatigability of the muscle were altered. Supra-physiological doses of vitamin D were accompanied by significant reductions in body and muscle mass, but not by an improvement in muscle functioning. Weight loss was largely due to a reduced food intake, while the left shift in the force-frequency relation may be due to increased 1,25D levels.


Subject(s)
Hydroxycholecalciferols/pharmacology , Isometric Contraction/drug effects , Muscle, Skeletal/drug effects , Age Factors , Animals , Body Mass Index , Calcitriol/analogs & derivatives , Calcitriol/blood , Creatinine/blood , Drinking/drug effects , Eating/drug effects , Fatigue/blood , Fatigue/physiopathology , Female , Hypercalcemia/chemically induced , Muscle Weakness/blood , Muscle Weakness/physiopathology , Rats , Rats, Inbred BN , Rats, Inbred F344 , Vitamin D Deficiency/blood , Vitamin D Deficiency/physiopathology
14.
Neth Heart J ; 19(9): 397-8, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21487749
15.
Rev Sci Instrum ; 81(10): 10D323, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21033847

ABSTRACT

To overcome the challenge of measuring the fuel ion ratio in the core (ρ<0.3) of ITER, a coordinated effort aiming at developing diagnostic techniques has been initiated. The investigated techniques are novel uses or further development of existing methods such as charge exchange recombination spectrometry, neutron spectrometry, and collective Thomson scattering. An overview of the work on the three diagnostic techniques is presented.

16.
Rev Sci Instrum ; 81(10): 10D929, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21033957

ABSTRACT

The newly installed electron cyclotron emission imaging diagnostic on ASDEX Upgrade provides measurements of the 2D electron temperature dynamics with high spatial and temporal resolution. An overview of the technical and experimental properties of the system is presented. These properties are illustrated by the measurements of the edge localized mode and the reversed shear Alfvén eigenmode, showing both the advantage of having a two-dimensional (2D) measurement, as well as some of the limitations of electron cyclotron emission measurements. Furthermore, the application of singular value decomposition as a powerful tool for analyzing and filtering 2D data is presented.

17.
Rev Sci Instrum ; 81(10): 10E521, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21034049

ABSTRACT

A coherence imaging camera has been set up at Pilot-PSI. The system is to be used for imaging the plasma density through the Stark effect broadening of the H(γ) line. Local density values are then obtained by the Abel inversion of the measured interferometric fringe contrast. This report will present the instrument setup and proof-of-principle demonstration. The inverted spatial electron density profiles obtained near the cascaded arc source of Pilot-PSI in discharges with axial magnetic field of B=0.4 T are compared with an independent measurement of electron density by Thomson scattering and good agreement is found.

18.
Eur J Appl Physiol ; 110(4): 665-94, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20602111

ABSTRACT

An inverse relationship exists between striated muscle fiber size and its oxidative capacity. This relationship implies that muscle fibers, which are triggered to simultaneously increase their mass/strength (hypertrophy) and fatigue resistance (oxidative capacity), increase these properties (strength or fatigue resistance) to a lesser extent compared to fibers increasing either of these alone. Muscle fiber size and oxidative capacity are determined by the balance between myofibrillar protein synthesis, mitochondrial biosynthesis and degradation. New experimental data and an inventory of critical stimuli and state of activation of the signaling pathways involved in regulating contractile and metabolic protein turnover reveal: (1) higher capacity for protein synthesis in high compared to low oxidative fibers; (2) competition between signaling pathways for synthesis of myofibrillar proteins and proteins associated with oxidative metabolism; i.e., increased mitochondrial biogenesis via AMP-activated protein kinase attenuates the rate of protein synthesis; (3) relatively higher expression levels of E3-ligases and proteasome-mediated protein degradation in high oxidative fibers. These observations could explain the fiber type-fiber size paradox that despite the high capacity for protein synthesis in high oxidative fibers, these fibers remain relatively small. However, it remains challenging to understand the mechanisms by which contractile activity, mechanical loading, cellular energy status and cellular oxygen tension affect regulation of fiber size. Therefore, one needs to know the relative contribution of the signaling pathways to protein turnover in high and low oxidative fibers. The outcome and ideas presented are relevant to optimizing treatment and training in the fields of sports, cardiology, oncology, pulmonology and rehabilitation medicine.


Subject(s)
Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/physiology , Muscle Strength/physiology , Oxygen/metabolism , Signal Transduction/physiology , Animals , Energy Metabolism/physiology , Humans , Hypertrophy
19.
Rev Sci Instrum ; 80(9): 093502, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19791937

ABSTRACT

A new TEXTOR electron cyclotron emission imaging system has been developed and employed, providing a diagnostic with new features and enhanced capabilities when compared to the legacy system it replaces. Optical coupling to the plasma has been completely redesigned, making use of new minilens arrays for reduced optical aberration and providing the new feature of vertical zoom, whereby the vertical coverage is now remotely adjustable on a shot-by-shot basis from 20-35 cm. Other innovations, such as the implementation of stacked quasioptical planar notch filters, allow for the diagnostic to be operated without interruption or degradation in performance during electron cyclotron resonance heating. Successful commissioning of the new diagnostic and a demonstration of the improved capabilities are presented in this paper, along with a discussion of the new technologies employed.

20.
Am J Physiol Heart Circ Physiol ; 297(1): H364-74, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19429822

ABSTRACT

Chronic exposure to hypoxia is associated with muscle atrophy (i.e., a reduction in muscle fiber cross-sectional area), reduced oxidative capacity, and capillary growth. It is controversial whether these changes are muscle and fiber type specific. We hypothesized that different regions of the same muscle would also respond differently to chronic hypoxia. To investigate this, we compared the deep (oxidative) and superficial (glycolytic) region of the plantaris muscle of eight male rats exposed to 4 wk of hypobaric hypoxia (410 mmHg, Po(2): 11.5 kPa) with those of nine normoxic rats. Hematocrit was higher in chronic hypoxic than control rats (59% vs. 50%, P < 0.001). Using histochemistry, we observed 10% fiber atrophy (P < 0.05) in both regions of the muscle but no shift in the fiber type composition and myoglobin concentration of the fibers. In hypoxic rats, succinate dehydrogenase (SDH) activity was elevated in fibers of each type in the superficial region (25%, P < 0.05) but not in the deep region, whereas in the deep region but not the superficial region the number of capillaries supplying a fiber was elevated (14%, P < 0.05). Model calculations showed that the region-specific alterations in fiber size, SDH activity, and capillary supply to a fiber prevented the occurrence of anoxic areas in the deep region but not in the superficial region. Inclusion of reported acclimatization-induced increases in mean capillary oxygen pressure attenuated the development of anoxic tissue areas in the superficial region of the muscle. We conclude that the determinants of tissue oxygenation show region-specific adaptations, resulting in a marked differential effect on tissue Po(2).


Subject(s)
Hypoxia/metabolism , Muscle, Skeletal/metabolism , Oxygen Consumption/physiology , Animals , Body Weight/physiology , Capillaries/physiology , Cell Size , Chronic Disease , Glycolysis/physiology , Hematocrit , Hemodynamics/physiology , Kinetics , Male , Models, Statistical , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/blood supply , Muscle, Skeletal/cytology , Myoglobin/metabolism , Myosin Heavy Chains/metabolism , Myosins/metabolism , Rats , Rats, Wistar , Regional Blood Flow/physiology , Succinate Dehydrogenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL