Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 67(11): 8817-8835, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38768084

ABSTRACT

Together with protein tyrosine kinases, protein tyrosine phosphatases (PTPs) control protein tyrosine phosphorylation and regulate numerous cellular functions. Dysregulated PTP activity is associated with the onset of multiple human diseases. Nevertheless, understanding of the physiological function and disease biology of most PTPs remains limited, largely due to the lack of PTP-specific chemical probes. In this study, starting from a well-known nonhydrolyzable phosphotyrosine (pTyr) mimetic, phosphonodifluoromethyl phenylalanine (F2Pmp), we synthesized 7 novel phosphonodifluoromethyl-containing bicyclic/tricyclic aryl derivatives with improved cell permeability and potency toward various PTPs. Furthermore, with fragment- and structure-based design strategies, we advanced compound 9 to compound 15, a first-in-class, potent, selective, and bioavailable inhibitor of human CDC14A and B phosphatases. This study demonstrates the applicability of the fragment-based design strategy in creating potent, selective, and bioavailable PTP inhibitors and provides a valuable probe for interrogating the biological roles of hCDC14 phosphatases and assessing their potential for therapeutic interventions.


Subject(s)
Enzyme Inhibitors , Phosphotyrosine , Humans , Phosphotyrosine/metabolism , Phosphotyrosine/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Structure-Activity Relationship , Protein Tyrosine Phosphatases, Non-Receptor/antagonists & inhibitors , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/chemistry , Protein Tyrosine Phosphatases/antagonists & inhibitors , Protein Tyrosine Phosphatases/metabolism , Molecular Structure , Biological Availability
2.
Chem Sci ; 14(44): 12606-12614, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38020389

ABSTRACT

T-cell protein tyrosine phosphatase (TC-PTP), encoded by PTPN2, has emerged as a promising target for cancer immunotherapy. TC-PTP deletion in B16 melanoma cells promotes tumor cell antigen presentation, while loss of TC-PTP in T-cells enhances T-cell receptor (TCR) signaling and stimulates cell proliferation and activation. Therefore, there is keen interest in developing TC-PTP inhibitors as novel immunotherapeutic agents. Through rational design and systematic screening, we discovered the first highly potent and selective TC-PTP PROTAC degrader, TP1L, which induces degradation of TC-PTP in multiple cell lines with low nanomolar DC50s and >110-fold selectivity over the closely related PTP1B. TP1L elevates the phosphorylation level of TC-PTP substrates including pSTAT1 and pJAK1, while pJAK2, the substrate of PTP1B, is unaffected by the TC-PTP degrader. TP1L also intensifies interferon gamma (IFN-γ) signaling and increases MHC-I expression. In Jurkat cells, TP1L activates TCR signaling through increased phosphorylation of LCK. Furthermore, in a CAR-T cell and KB tumor cell co-culture model, TP1L enhances CAR-T cell mediated tumor killing efficacy through activation of the CAR-T cells. Thus, we surmise that TP1L not only provides a unique opportunity for in-depth interrogation of TC-PTP biology but also serves as an excellent starting point for the development of novel immunotherapeutic agents targeting TC-PTP.

3.
Molecules ; 28(19)2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37836790

ABSTRACT

Src homology 2 domain-containing phosphatase 2 (SHP2) is an attractive target for cancer therapy due to its multifaceted roles in both tumor and immune cells. Herein, we designed and synthesized a novel series of proteolysis targeting chimeras (PROTACs) using a SHP2 allosteric inhibitor as warhead, with the goal of achieving SHP2 degradation both inside the cell and in vivo. Among these molecules, compound P9 induces efficient degradation of SHP2 (DC50 = 35.2 ± 1.5 nM) in a concentration- and time-dependent manner. Mechanistic investigation illustrates that the P9-mediated SHP2 degradation requires the recruitment of the E3 ligase and is ubiquitination- and proteasome-dependent. P9 shows improved anti-tumor activity in a number of cancer cell lines over its parent allosteric inhibitor. Importantly, administration of P9 leads to a nearly complete tumor regression in a xenograft mouse model, as a result of robust SHP2 depletion and suppression of phospho-ERK1/2 in the tumor. Hence, P9 represents the first SHP2 PROTAC molecule with excellent in vivo efficacy. It is anticipated that P9 could serve not only as a new chemical tool to interrogate SHP2 biology but also as a starting point for the development of novel therapeutics targeting SHP2.


Subject(s)
Neoplasms , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Humans , Animals , Mice , Neoplasms/drug therapy , Cell Line , Proteasome Endopeptidase Complex/metabolism , Ubiquitin-Protein Ligases/metabolism , Proteolysis
4.
Angew Chem Int Ed Engl ; 62(22): e202303818, 2023 05 22.
Article in English | MEDLINE | ID: mdl-36973833

ABSTRACT

Protein tyrosine phosphatase 1B (PTP1B) and T-cell protein tyrosine phosphatase (TC-PTP) play non-redundant negative regulatory roles in T-cell activation, tumor antigen presentation, insulin and leptin signaling, and are potential targets for several therapeutic applications. Here, we report the development of a highly potent and selective small molecule degrader DU-14 for both PTP1B and TC-PTP. DU-14 mediated PTP1B and TC-PTP degradation requires both target protein(s) and VHL E3 ligase engagement and is also ubiquitination- and proteasome-dependent. DU-14 enhances IFN-γ induced JAK1/2-STAT1 pathway activation and promotes MHC-I expression in tumor cells. DU-14 also activates CD8+ T-cells and augments STAT1 and STAT5 phosphorylation. Importantly, DU-14 induces PTP1B and TC-PTP degradation in vivo and suppresses MC38 syngeneic tumor growth. The results indicate that DU-14, as the first PTP1B and TC-PTP dual degrader, merits further development for treating cancer and other indications.


Subject(s)
Neoplasms , Protein Tyrosine Phosphatase, Non-Receptor Type 2 , Humans , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , CD8-Positive T-Lymphocytes/metabolism , Neoplasms/drug therapy , Phosphorylation , Immunotherapy
5.
Expert Opin Drug Discov ; 17(8): 825-837, 2022 08.
Article in English | MEDLINE | ID: mdl-35637605

ABSTRACT

INTRODUCTION: While immunotherapy strategies such as immune checkpoint inhibition and adoptive T cell therapy have become commonplace in cancer therapy, they suffer from limitations, including lack of patient response and toxicity. To wield the maximum potential of the immune system, cancer immunotherapy must integrate novel targets and therapeutic strategies with potential to augment clinical efficacy of currently utilized immunotherapies. PTPN22, a member of the protein tyrosine phosphatase (PTP) superfamily that downregulates T cell signaling and proliferation, has recently emerged as a systemically druggable and novel immunotherapy target. AREAS COVERED: This review describes the basics of PTPN22 structure and function and provides comprehensive insight into recent advances in small molecule PTPN22 inhibitor development and the immense potential of PTPN22 inhibition to synergize with current immunotherapies. EXPERT OPINION: It is apparent that small molecule PTPN22 inhibitors have enormous potential to augment efficacy of current immunotherapy strategies such as checkpoint inhibition and adoptive cell transfer. Nevertheless, several constraints must be overcome before these inhibitors can be applied as useful therapeutics, namely selectivity, potency, and in vivo efficacy.


Subject(s)
Immunotherapy , Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 22/metabolism , Signal Transduction , T-Lymphocytes
6.
Medchemcomm ; 8(2): 440-444, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28649316

ABSTRACT

Protein arginine methyltransferase 1 (PRMT1) is a key player for the dynamic regulation of arginine methylation. Its dysregulation and aberrant expression are implicated in various pathological conditions, and a plethora of evidence suggests that PRMT1 inhibition is of significant therapeutic value. Herein, we reported the modification of a series of diamidine compounds with varied lengths in the middle alkyl linker for PRMT1 inhibition. Decamidine (2j), which possesses the longest linker in the series, displayed 2- and 4- fold increase in PRMT1 inhibition (IC50 = 13 µM), as compared with furamdine and stilbamidine. The inhibitory activity toward PRMT1 was validated by secondary orthogonal assays. Docking studies showed that the increased activity is due to the extra interaction of the amidine group with the SAM binding pocket, which is absent when the linker is not long enough. These results provide structural insights into developing the amidine type of PRMT1 inhibitors.

SELECTION OF CITATIONS
SEARCH DETAIL
...