Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Appl Genet ; 126(11): 2717-36, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23975245

ABSTRACT

Advancements in genotyping are rapidly decreasing marker costs and increasing marker density. This opens new possibilities for mapping quantitative trait loci (QTL), in particular by combining linkage disequilibrium information and linkage analysis (LDLA). In this study, we compared different approaches to detect QTL for four traits of agronomical importance in two large multi-parental datasets of maize (Zea mays L.) of 895 and 928 testcross progenies composed of 7 and 21 biparental families, respectively, and genotyped with 491 markers. We compared to traditional linkage-based methods two LDLA models relying on the dense genotyping of parental lines with 17,728 SNP: one based on a clustering approach of parental line segments into ancestral alleles and one based on single marker information. The two LDLA models generally identified more QTL (60 and 52 QTL in total) than classical linkage models (49 and 44 QTL in total). However, they performed inconsistently over datasets and traits suggesting that a compromise must be found between the reduction of allele number for increasing statistical power and the adequacy of the model to potentially complex allelic variation. For some QTL, the model exclusively based on linkage analysis, which assumed that each parental line carried a different QTL allele, was able to capture remaining variation not explained by LDLA models. These complementarities between models clearly suggest that the different QTL mapping approaches must be considered to capture the different levels of allelic variation at QTL involved in complex traits.


Subject(s)
Chromosome Mapping , Haplotypes/genetics , Linkage Disequilibrium/genetics , Models, Genetic , Polymorphism, Genetic , Quantitative Trait Loci/genetics , Zea mays/genetics , Alleles , Cluster Analysis , Crosses, Genetic , Genetic Loci/genetics , Genome, Plant/genetics , Inheritance Patterns/genetics
2.
PLoS Negl Trop Dis ; 6(4): e1598, 2012.
Article in English | MEDLINE | ID: mdl-22509418

ABSTRACT

BACKGROUND: T. cruzi strains have been divided into six discrete typing units (DTUs) according to their genetic background. These groups are designated T. cruzi I to VI. In this context, amastigotes from G strain (T. cruzi I) are highly infective in vitro and show no parasitemia in vivo. Here we aimed to understand why amastigotes from G strain are highly infective in vitro and do not contribute for a patent in vivo infection. METHODOLOGY/PRINCIPAL FINDINGS: Our in vitro studies demonstrated the first evidence that IFN-γ would be associated to the low virulence of G strain in vivo. After intraperitoneal amastigotes inoculation in wild-type and knockout mice for TNF-α, Nod2, Myd88, iNOS, IL-12p40, IL-18, CD4, CD8 and IFN-γ we found that the latter is crucial for controlling infection by G strain amastigotes. CONCLUSIONS/SIGNIFICANCE: Our results showed that amastigotes from G strain are highly infective in vitro but did not contribute for a patent infection in vivo due to its susceptibility to IFN-γ production by host immune cells. These data are useful to understand the mechanisms underlying the contrasting behavior of different T. cruzi groups for in vitro and in vivo infection.


Subject(s)
Chagas Disease/immunology , Interferon-gamma/immunology , Trypanosoma cruzi/immunology , Animals , Female , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Parasitemia/immunology , Parasitemia/prevention & control , Trypanosoma cruzi/pathogenicity
3.
Genetics ; 190(2): 795-811, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22135356

ABSTRACT

Understanding the genetic bases underlying heterosis is a major issue in maize (Zea mays L.). We extended the North Carolina design III (NCIII) by using three populations of recombinant inbred lines derived from three parental lines belonging to different heterotic pools, crossed with each parental line to obtain nine families of hybrids. A total of 1253 hybrids were evaluated for grain moisture, silking date, plant height, and grain yield. Quantitative trait loci (QTL) mapping was carried out on the six families obtained from crosses to parental lines following the "classical" NCIII method and with a multiparental connected model on the global design, adding the three families obtained from crosses to the nonparental line. Results of the QTL detection highlighted that most of the QTL detected for grain yield displayed apparent overdominance effects and limited differences between heterozygous genotypes, whereas for grain moisture predominance of additive effects was observed. For plant height and silking date results were intermediate. Except for grain yield, most of the QTL identified showed significant additive-by-additive epistatic interactions. High correlation observed between heterosis and the heterozygosity of hybrids at markers confirms the complex genetic basis and the role of dominance in heterosis. An important proportion of QTL detected were located close to the centromeres. We hypothesized that the lower recombination in these regions favors the detection of (i) linked QTL in repulsion phase, leading to apparent overdominance for heterotic traits and (ii) linked QTL in coupling phase, reinforcing apparent additive effects of linked QTL for the other traits.


Subject(s)
Chromosome Mapping , Hybrid Vigor , Quantitative Trait Loci , Zea mays/genetics , Alleles , Epistasis, Genetic , Genes, Dominant , Heterozygote , Homozygote , Phenotype
4.
Circulation ; 96(10): 3521-6, 1997 Nov 18.
Article in English | MEDLINE | ID: mdl-9396450

ABSTRACT

BACKGROUND: Spectral analysis of heart rate (HR) variability (HRV) requires, as a rule, some level of stationarity and, as a result, is inadequate to quantify biological transients. A time-/frequency-domain method (TF) was developed to obtain an instant spectral power (SP) of HRV during tilt. METHODS AND RESULTS: HR was recorded by Holter monitoring in volunteers and analyzed with a TF, the smoothed pseudo-Wigner-Ville transformation (SPWVT), with the table inclination randomly set or continuously increased while the table rotated in head-up position. (1) The SPWVT assesses, beat by beat, the instant center frequency (ICF) of the SP. ICF correlates better with instant HR than the ratio of low- (LF) to high-frequency (HF) oscillations. The transient effect of tilt is better characterized as a shift of SP toward lower frequencies than by changes in amplitudes. (2) The method evidences variations of HR from one second to another. During the passage to head-up position, the vagal withdrawal and the sympathetic activation occur nearly simultaneously, as indicated by the instant changes in both LF and HF amplitudes and ICF. (3) The averaged results of the SPWVT give results similar to those previously obtained with autoregressive algorithms. CONCLUSIONS: The SPWVT is a new tool to explore HR transitions such as periods before episodes of arrhythmias on a time scale of one beat and allows quantification of an instant frequency index (ICF) that closely reflects the instantaneous relationship between sympathetic and vagal modulations.


Subject(s)
Heart Rate/physiology , Posture/physiology , Tilt-Table Test , Adult , Electrocardiography, Ambulatory , Female , Fourier Analysis , Humans , Male , Middle Aged , Time Factors
5.
Cardiovasc Drugs Ther ; 10(6): 677-85, 1997 Jan.
Article in English | MEDLINE | ID: mdl-9110110

ABSTRACT

Heart rate varies with respiration, blood pressure, emotion, etc., and heart rate variability (HRV) is presently one of the best indices to predict fatal issues in cardiac failure and after myocardial infarction. HRV depends on various reflexes. In addition, parallel studies of HRV and the myocardial adrenergic and muscarinic transduction system in experimental models of cardiac hypertrophy (CH) have suggested that the myocardial phenotype at the sinus-node level may also play a role. A transgenic strain of mice with atrial overexpression of the beta 1-adrenergic receptors was generated with attenuated HRV, which demonstrates that the phenotype itself is a determinant of HRV. HRV is explored by noninvasive techniques, including simple determination of the standard error of the mean, time-domain analysis, and Fourier transformation. We recently developed a time and frequency domain method of analysis, the smoothed pseudo-Wigner-Ville transformation, which allows better exploration of nonstationarity. Nonlinear methods have also been applied due to the extreme complexity of the biological determinants, and have provided evidence of a chaotic attractor in certain conditions. It is proposed that in steady state a very simple process, which is not completely deterministic, could better explain intermit interval regulations than chaotic behavior. In contrast, under extreme circumstances the regulation proceeds using chaotic behavior. Arrhythmias and HRV can be quantitated in 16-month-old unanesthetized spontaneously hypertensive rats (SHR). Ventricular premature beats are more frequent in SHR than in age-matched controls; they disappear after converting enzyme inhibition (CEI) relative to the reduction of both cardiac hypertrophy and ventricular fibrosis. HRV is attenuated in SHR, as it is in compensatory CH in humans. When CH is prevented, HRV returns to normal. CEI is therefore antiarrhythmic. Another pharmacological application of this concept concerns the bradycardic agents that may improve HRV.


Subject(s)
Biological Clocks/drug effects , Cardiac Output, Low/drug therapy , Heart Rate/drug effects , Myocardial Infarction/drug therapy , Animals , Data Interpretation, Statistical , Fourier Analysis , Humans , Phenotype , Prognosis
6.
J Mol Med (Berl) ; 75(11-12): 860-6, 1997.
Article in English | MEDLINE | ID: mdl-9428618

ABSTRACT

Heart rate is a function of at least three factors located in the sinus node, including the pacemaker and the activity of the sympathetic and vagal pathways. Heart rate varies during breathing and exercising. The is far from being a purely academic question because, after myocardial infarction or in cardiac insufficiency, reduced heart rate variability (HRV) represents the most valuable prognostic factor. HRV is usually considered index of the sympathovagal balance and is explored using time domain analysis, such as spectral analysis. Nevertheless, methods such as the Fast Fourier Transformation are not applicable to small rodents which have an unstable heart rate with asymmetric oscillations. Nonlinear methods show chaotic behavior under some conditions. A time and frequency domain method of analysis, the Wigner-Villé Transform, has been proposed for the study of HRV in both humans and small rodents, as a compromise between linear and nonlinear methods. We developed a method to quantify both arrhythmias and HRV in unanesthetized rodents. Such a method allows study of the relationship between the physiological parameters and the myocardial phenotype. Ventricular premature beats are more frequent in 16-month-old spontaneously hypertensive rats than in age-matched controls. In addition, HRV is attenuated in spontaneously hypertensive rats, as in compensatory cardiac hypertrophy in humans, and such attenuation is considered a prognostic index. Converting enzyme inhibition reduces in parallel arterial hypertension, cardiac hypertrophy, and ventricular fibrosis; it prevents ventricular premature beats and normalizes heart rate variability. It can be demonstrated that the incidence of ventricular premature beats is linked to the myocardial phenotype in terms of both cardiac hypertrophy and fibrosis. The two factors act as independent variables. HRV is correlated with the incidence of arrhythmias, suggesting that the beneficial effects of converting enzyme inhibition are related to prevention of arrhythmias.


Subject(s)
Heart Rate/physiology , Models, Cardiovascular , Animals , Cardiomegaly/physiopathology , Disease Models, Animal , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...