Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Physiol Pharmacol ; 72(6)2021 Dec.
Article in English | MEDLINE | ID: mdl-35377338

ABSTRACT

A low-frequency electromagnetic field (EMF) is an environmental pollutant that may influence female reproduction. This research was undertaken to test the hypothesis that EMF causes alterations in the transcriptomic profile of the endometrium. This study investigated the in vitro effects of EMF treatment (50 Hz, 2 h) on global transcriptome alterations in the endometrium isolated from pigs during the peri-implantation period. The control endometrium was not treated with EMF. The EMF treatment altered the expression of 1561 transcriptionally active regions (TARs) in the endometrium. In the group of 461 evaluated DEGs, 156 were up-regulated (34%), 305 were down-regulated (66%) and 341 (74%) had known biological functions. A total of 210 long noncoding RNAs (lncRNAs) with changes in expression profiles, and 146 predicted RNA editing sites were also evaluated. Exposure to EMF changes the expression of genes encoding proteins that are involved in proliferation and metabolism in endometrial tissue. These results provide useful inputs for further research into the impact of EMF on molecular changes in the uterus during the peri-implantation period and, consequently, pregnancy outcome.


Subject(s)
Electromagnetic Fields , Transcriptome , Animals , Electromagnetic Fields/adverse effects , Embryo Implantation/genetics , Endometrium/metabolism , Female , Pregnancy , Swine , Uterus
2.
Theriogenology ; 142: 400-413, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31711689

ABSTRACT

Semen freezability is associated with genetic markers, and there is a diverse set of sperm transcripts that have been attributed to various cellular functions. RNA-Seq was performed to compare the transcript profiles of spermatozoa from boars with different semen freezability. We examined ejaculates from the Polish large white (PLW) boars that were classified as having good and poor semen freezability (GSF and PSF, respectively; n = 3 boars per group) by assessing post-thaw motility characteristics, mitochondrial membrane potential, plasma membrane and acrosome integrity. Total RNA was isolated from fresh spermatozoa from boars of the GSF and PSF groups and subjected to RNA-Seq (Illumina NextSeq 500 platform). Transcript abundance was assessed with the DESeq2, DESeq, and EdgeR Bioconductor R packages, and varying numbers of differentially expressed gene (DEG) transcripts were detected in the spermatozoa of each boar. Using RNA-Seq, we identified several genes associated with inflammation and apoptosis (FOS, NFATC3, ITGAL, EAF2 and ZDHHC14), spermatogenesis (FGF-14 and BAMBI), autophagy (RAB33B), protein phosphorylation (PTPRU and PTPN2) and energy metabolism (ND6 and ACADM) that were predominantly up-regulated in poor freezability ejaculates. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) validated the transcript expression levels detected by RNA-Seq and thus confirmed the reliability of this technique. Subsequent validation with western blotting showed that the expression of three proteins was in accordance with the transcript abundance. Overall, we demonstrated that the up-regulation of the DEG transcripts in spermatozoa was associated with poor semen freezability. We suggest that spermatozoa transcriptome profiling provides a foundation to further elucidate the relevance of sperm-related transcripts on cryo-survival. The sperm-related transcripts, namely FOS, NFATC3, EAF2, BAMBI, PTPRU, PTPN2, ND6 and ACADM, are potential markers for predicting the freezability of boar semen.


Subject(s)
Freezing , Gene Expression Profiling , RNA-Seq , Semen Preservation , Spermatozoa/metabolism , Swine/genetics , Animals , Cryopreservation/methods , Cryopreservation/veterinary , Freezing/adverse effects , Gene Expression Profiling/methods , Gene Expression Profiling/veterinary , Male , RNA-Seq/veterinary , Semen Analysis/veterinary , Semen Preservation/classification , Semen Preservation/standards , Semen Preservation/veterinary , Spermatozoa/chemistry , Swine/metabolism , Transcriptome
4.
Reprod Fertil Dev ; 29(10): 2073-2084, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28193317

ABSTRACT

The Eurasian beaver is one of the largest rodents that, despite its high impact on the environment, is a non-model species that lacks a reference genome. Characterising genes critical for pregnancy outcome can serve as a basis for identifying mechanisms underlying effective reproduction, which is required for the success of endangered species conservation programs. In the present study, high-throughput RNA sequencing (RNA-seq) was used to analyse global changes in the Castor fiber subplacenta transcriptome during multiple pregnancy. De novo reconstruction of the C. fiber subplacenta transcriptome was used to identify genes that were differentially expressed in placentas (n=5) from two females (in advanced twin and triple pregnancy). Analyses of the expression values revealed 124 contigs with significantly different expression; of these, 55 genes were identified using MegaBLAST. Within this group of differentially expressed genes (DEGs), 18 were upregulated and 37 were downregulated in twins. Most DEGs were associated with the following gene ontology terms: cellular process, single organism process, response to stimulus, metabolic process and biological regulation. Some genes were also assigned to the developmental process, the reproductive process or reproduction. Among this group, four genes (namely keratin 19 (Krt19) and wingless-type MMTV integration site family - member 2 (Wnt2), which were downregulated in twins, and Nik-related kinase (Nrk) and gap junction protein ß2 (Gjb2), which were upregulated in twins) were assigned to placental development and nine (Krt19, Wnt2 and integrin α7 (Itga7), downregulated in twins, and Nrk, gap junction protein ß6 (Gjb6), GATA binding protein 6 (Gata6), apolipoprotein A-I (ApoA1), apolipoprotein B (ApoB) and haemoglobin subunit α1 (HbA1), upregulated in twins) were assigned to embryo development. The results of the present study indicate that the number of fetuses affects the expression profile in the C. fiber subplacental transcriptome. Enhancement of transcriptomic resources for C. fiber will improve understanding of the pathways relevant to proper placental development and successful reproduction.


Subject(s)
Gene Expression , Placenta/metabolism , Rodentia/metabolism , Transcriptome , Animals , Female , Gene Expression Profiling , Pregnancy , Pregnancy, Multiple , Rodentia/genetics
5.
Mitochondrial DNA B Resour ; 1(1): 37-38, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-33473398

ABSTRACT

The structure of Colletotrichum lupini mitogenome is typical of a fungus from the genus Colletotrichum similar to C. acutatum and C. lindemuthianum. The sequenced mitogenome has a total length of 36 554 bp. The nucleotide composition in the following genome is: 35.7% - A, 16.5% - C, 13.4% - G and 29.9% - T. In the C. lupini mitogenome we identified 46 genes: 15 protein coding genes, two ribosomal RNAs and 29 tRNA genes.

SELECTION OF CITATIONS
SEARCH DETAIL
...