Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Biomol Struct Dyn ; : 1-23, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38315459

ABSTRACT

A series of new 2,5-disubstituted arylidene derivatives of thiazolidinedione (16a-e, 17a-d, 18a-c) designed using molecular hybridization approach were synthesized, structurally characterized, and explored for their anti-obesity potential via inhibition of Pancreatic Lipase (PL). Compound 18a presented the most potent PL inhibitory activity with IC50 = 2.71 ± 0.31 µM, as compared to the standard drug, Orlistat (IC50 = 0.99 µM). Kinetic study revealed reversible competitive mode of enzyme inhibition by compound 18a with an inhibitory constant value of 1.19 µM. The most promising compound 18a revealed satisfactory binding mode within the active site of the target protein (human PL, PDB ID: 1LPB). Also, MM/PBSA binding free energy and molecular dynamics (MD) simulation analysis were performed for the most promising compound 18a, which showed potent inhibition according to the results of in vitro studies. Furthermore, a stable conformation of the 1LPB-ligand suggested the stability of this compound in the dynamic environment. The ADME and toxicity analysis of the compounds were examined using web-based online platforms. Results of in vivo studies confirmed the anti-obesity efficacy of compound 18a, wherein oral treatment with compound 18a (30 mg/kg) resulted in a significant reduction in the body weight, BMI, Lee index, feed intake (in Kcal), body fat depots and serum triglycerides. Compound 18a significantly decreased the levels of serum total cholesterol (TC) to 128.6 ± 0.59 mg/dl and serum total triglycerides (TG) to 95.73 ± 0.67 mg/dl as compared to the HFD control group. The present study identified disubstituted TZD derivatives as a new promising class of anti-obesity agents.Communicated by Ramaswamy H. Sarma.

2.
J Reprod Immunol ; 158: 103979, 2023 08.
Article in English | MEDLINE | ID: mdl-37348446

ABSTRACT

This study investigated if in vitro supplementation of vitexin could mitigate the adverse effects of hyperthermia on buffalo mammary epithelial cells (BuMECs). Immortalized BuMECs were divided into seven groups (n = 3): (1) a negative control group at 37 °C; (2) BuMECs exposed to heat stress as a positive control at 42 °C for 1 h; (3-7) heat stressed BuMECs pre-treated or co-treated with different concentrations of vitexin (5 µM, 10 µM, 20 µM, 50 µM, and 100 µM), respectively. Hyperthermia was induced by exposing the cells to 42 ºC for 1 h. For the pre-treatment experiment, BuMECs were treated with vitexin for 2 h before hyperthermia exposure. For co-treatment, vitexin was added simultaneously with hyperthermia for 1 h. Subsequently, the cells were allowed to recover for 12 h at 37 °C. Results showed that pre-treatment with vitexin was more effective than co-treatment in protecting BuMECs from hyperthermia in a dose-dependent manner, with higher concentrations (50 µM and 100 µM) being the most effective. Pre-treatment with vitexin maintained cellular viability and prevented inflammation by inducing the expression of the anti-apoptotic gene (BCL-2) and reducing the expression of the pro-apoptotic gene (Bax) and pro-inflammatory mediators (IL-1ß, IL-6) in heat-stressed BuMECs. Pre-treatment with vitexin reduced oxidative stress and induced thermotolerance by increasing the expression of antioxidants mediators such as SOD, GPx and CAT at mRNA and protein levels, and modulating the expression of heat shock proteins. The findings suggest that vitexin has the potential as a therapeutic agent to protect the mammary gland from the negative impact of hyperthermia in dairy cows.


Subject(s)
Buffaloes , Hyperthermia, Induced , Female , Animals , Cattle , Oxidative Stress , Epithelial Cells/metabolism
3.
Steroids ; 196: 109244, 2023 08.
Article in English | MEDLINE | ID: mdl-37137454

ABSTRACT

Phytosterols are bioactive substances naturally found in plant cell membranes, and their chemical structure is comparable to cholesterol found in mammalian cells. They are widely distributed in plant foods like olive oil, nuts, seeds, and legumes. Amongst the variety of phytosterols, stigmasterol is the vital compound found abundantly in plants. Numerous hormones, including estrogen, progesterone, corticoids and androgen, are synthesized by stigmasterol. Multiple in-vitro and in-vivo investigations have shown that stigmasterol has various biological effects, including antioxidant, anticancer, antidiabetic, respiratory diseases, and lipid-lowering effects. Experimental research on stigmasterol provides indisputable proof that this phytosterol has the potential to be employed in supplements used to treat the illnesses mentioned above. This substance has a high potential, making it a noteworthy medication in the future. Although several researchers have investigated this phytosterol to assess its prospective qualities, it has not yet attained therapeutic levels, necessitating additional clinical studies. This review offers a comprehensive update on stigmasterol, including chemical framework, biosynthesis, synthetic derivatives, extraction and isolation, analytical aspects, pharmacological profile, patent status, clinical trials, stability and specifications as per regulatory bodies.


Subject(s)
Phytosterols , Stigmasterol , Animals , Prospective Studies , Phytosterols/chemistry , Cholesterol , Plants/metabolism , Sitosterols , Mammals/metabolism
4.
J Biomol Struct Dyn ; 41(20): 10604-10626, 2023 12.
Article in English | MEDLINE | ID: mdl-36510679

ABSTRACT

Dual aromatase-steroid sulfatase inhibitors (DASIs) lead to significant deprivation of estrogen levels as compared to a single target inhibition and thereby exhibited an additive or synergistic effect in the treatment of hormone-dependent breast cancer (HDBC). Triazole-bearing DASI's having structural features of clinically available aromatase inhibitors are identified as lead structures for optimization as DASI's. To identify the spatial fingerprints of target-specific triazole as DASI's, we have performed molecular docking assisted Gaussian field-based comparative 3D-QSAR studies on a dataset with dual aromatase-STS inhibitory activities. Separate contours were generated for both aromatase and steroid sulphates showing respective pharmacophoric structural requirements for optimal activity. These developed 3D-QSAR models also showed good statistical measures with the excellent predictive ability with PLS-generated validation constraints. Comparative steric, electrostatic, hydrophobic, HBA, and HBD features were elucidated using respective contour maps for selective target-specific favourable activity. Furthermore, the molecular docking was used for elucidating the mode of binding as DASI's along with the MD simulation of 100 ns revealed that all the protease-ligand docked complexes are overall stable as compared to reference ligand (inhibitor ASD or Irosustat) complex. Further, the MM-GBSA study revealed that compound 24 binds to aromatase as well as STS active site with relatively lower binding energy than reference complex, respectively. A comparative study of these developed multitargeted QSAR models along with molecular docking and dynamics study can be employed for the optimization of drug candidates as DASI's.Communicated by Ramaswamy H. Sarma.


Subject(s)
Aromatase Inhibitors , Breast Neoplasms , Humans , Female , Aromatase Inhibitors/pharmacology , Aromatase Inhibitors/chemistry , Steryl-Sulfatase/metabolism , Breast Neoplasms/drug therapy , Molecular Docking Simulation , Aromatase/chemistry , Ligands , Triazoles/pharmacology , Triazoles/chemistry , Quantitative Structure-Activity Relationship , Molecular Dynamics Simulation
5.
Cells ; 11(20)2022 10 21.
Article in English | MEDLINE | ID: mdl-36291191

ABSTRACT

The mammary gland is a unique organ with the ability to undergo repeated cyclic changes throughout the life of mammals. Among domesticated livestock species, ruminants (cattle and buffalo) constitute a distinct class of livestock species that are known milk producers. Cattle and buffalo contribute to 51 and 13% of the total milk supply in the world, respectively. They also play an essential role in the development of the economy for farming communities by providing milk, meat, and draft power. The development of the ruminant mammary gland is highly dynamic and multiphase in nature. There are six developmental stages: embryonic, prepubertal, pubertal, pregnancy, lactation, and involution. There has been substantial advancement in our understanding of the development of the mammary gland in both mouse and human models. Until now, there has not been a thorough investigation into the molecular processes that underlie the various stages of cow udder development. The current review sheds light on the morphological and molecular changes that occur during various developmental phases in diverse species, with a particular focus on the cow udder. It aims to explain the physiological differences between cattle and non-ruminant mammalian species such as humans, mice, and monkeys. Understanding the developmental biology of the mammary gland in molecular detail, as well as species-specific variations, will facilitate the researchers working in this area in further studies on cellular proliferation, differentiation, apoptosis, organogenesis, and carcinogenesis. Additionally, in-depth knowledge of the mammary gland will promote its use as a model organ for research work and promote enhanced milk yield in livestock animals without affecting their health and welfare.


Subject(s)
Buffaloes , Mammary Glands, Human , Pregnancy , Female , Cattle , Animals , Mice , Humans , Mammary Glands, Animal , Lactation , Milk
6.
J Reprod Immunol ; 153: 103684, 2022 09.
Article in English | MEDLINE | ID: mdl-35973294

ABSTRACT

The epithelial cell is the main basic unit of the udder in which milk synthesis takes place. Curcumin is well known for its antioxidant, anti-apoptotic, and anti- inflammatory properties. The present study was performed to test whether in vitro curcumin supplementation can alleviate the unfavorable impact of hyperthermia on buffalo mammary epithelial cells (BuMECs). The spontaneously immortalized BuMECs were divided into 7 groups (n = 9); 1) unstressed BuMECs (negative control, 37 °C); 2) BuMECs exposed to hyperthermia without curcumin treatment (positive control); 3-7) BuMECs cultured with different concentrations of curcumin (5, 10, 20, 40 and 60 µM), respectively, followed by hyperthermic exposure (42ºC) for 1 h and then returned to 37ºC. Changes in viability (MTT assay), proliferation (BrdU colorimetric immunoassay) and concentrations of antioxidant enzymes, CAT, and SOD (ELISA) of BuMECs were recorded. The gene expression study was performed using qRT-PCR. Lower concentrations of curcumin (5, 10 µM) maintained viability, enhanced proliferation, and content of antioxidant enzymes of heat stressed BuMECs. Curcumin induced thermotolerance and antioxidant status by upregulating the expression of antioxidants genes, anti-apoptotic genes and heat shock proteins in heat stressed BuMECs compared to the positive control group. Besides, curcumin reduced apoptosis and inflammation in BuMECs exposed to hyperthermia by downregulating the expression of genes and transcriptional factors associated with apoptosis and inflammatory immune response. The results reveal the potential roles of curcumin in eliminating the negative impact of hyperthermia on BuMECs by regulating the pathways of apoptosis, inflammation, and oxidative stress.


Subject(s)
Curcumin , Thermotolerance , Animals , Antioxidants/metabolism , Apoptosis , Bromodeoxyuridine/metabolism , Buffaloes/metabolism , Curcumin/metabolism , Curcumin/pharmacology , Epithelial Cells/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Heat-Shock Response , Inflammation/metabolism , Oxidative Stress , Superoxide Dismutase/metabolism
7.
FASEB J ; 35(6): e21621, 2021 06.
Article in English | MEDLINE | ID: mdl-33977573

ABSTRACT

The lactating mammary gland harbours numerous matured alveoli with their lumen surrounded by differentiated mammary epithelial cells (MECs), which are exclusively involved in milk synthesis and secretion. Buffalo (Bubalus bubalis) is the second major milk-producing animal, and its physiology is different from cattle. The complete protein machinery involved in MECs differentiation is still not defined in ruminants, in particular, buffalo. Therefore, we have studied the differential expression of regulated proteins in the in vitro grown buffalo MECs (BuMECs) at different time points (on 3, 6, 12, and 15 days) of their differentiation in the presence of lactogenic hormones. TMT-based MS analysis identified 4,934 proteins; of them, 681 were differentially expressed proteins (DEPs). The principal component analysis suggested a highly heterogeneous expression of DEPs at the four-time points of hormone treatment, with most of them (307) attained the highest expression on 12 days. Bioinformatics analysis revealed the association of DEPs with 24 KEGG pathways. We observed few new proteins, namely ABCA13, IVL, VPS37, CZIB, RFX7, Rab5, TTLL12, SMEK1, GDI2, and TMEM131 in BuMECs. The function of one of the highly upregulated proteins, namely involucrin in the differentiation of BuMECs was confirmed based on biochemical inhibition assay. The results further conclude that the proteins with higher abundance can be considered as the potential biomarkers for differentiation, and they may have a significant association with the lactation process in buffalo too. The proteome dataset obtained can be used to understand the species-specific variations among other lactating animals.


Subject(s)
Cell Differentiation , Epithelial Cells/metabolism , Lactation , Mammary Glands, Animal/metabolism , Milk/chemistry , Proteome/analysis , Proteome/metabolism , Animals , Buffaloes , Cattle , Epithelial Cells/cytology , Female , Mammary Glands, Animal/cytology , Mass Spectrometry , Milk Proteins/metabolism
8.
J Proteomics ; 241: 104220, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33838350

ABSTRACT

Animal production and health are of significant economic importance, particularly regarding the world food supply. Animal and veterinary sciences have evolved immensely in the past six decades, particularly in genetics, nutrition, housing, management and health. To address major challenges such as those posed by climate change or metabolic disorders, it is of utmost importance to use state-of-the-art research tools. Proteomics and the other post-genomic tools (transcriptomics or metabolomics) are among them. Proteomics has experienced a considerable development over the last decades. This brought developments to different scientific fields. The use and adoption of proteomics tools in animal and veterinary sciences has some limitations (database availability or access to proteomics platforms and funding). As a result, proteomics' use by animal science researchers varies across the globe. In this viewpoint article, we focus on the developments of domestic animal proteomics over the last decade in different regions of the globe and how the researchers have coped with such challenges. In the second part of the article, we provide examples of funding, educational and laboratory establishment initiatives designed to foster the development of (animal-based) proteomics. International scientific collaboration is a definitive and key feature in the development and advancement of domestic animal proteomics. SIGNIFICANCE: Animal production and health are very important for food supply worldwide particularly as a source of proteinaceous foods. Animal and veterinary sciences have evolved immensely in the last decades. In order to address the major contemporary challenges facing animal and veterinary sciences, it is of utmost importance to use state-of-the-art research tools such as Proteomics and other Omics. Herein, we focus on the major developments in domestic animal proteomics worldwide during the last decade and how different regions of the world have used the technology in this specific research field. We address also major international efforts aiming to increase the research output in this area and highlight the importance of international cooperation to address specific problems inherent to domestic animal proteomics.


Subject(s)
Animals, Domestic , Proteomics , Animals , Computational Biology , Metabolomics , Retrospective Studies
9.
Eur J Med Chem ; 209: 112923, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33121862

ABSTRACT

Carbonic anhydrase (CA, EC 4.2.1.1) is an enzyme and a very omnipresent zinc metalloenzyme which catalyzed the reversible hydration and dehydration of carbon dioxide and bicarbonate; a reaction which plays a crucial role in many physiological and pathological processes. Carbonic anhydrase is present in human (h) with sixteen different isoforms ranging from hCA I-hCA XV. All these isoforms are widely distributed in different tissues/organs and are associated with a range of pivotal physiological activities. Due to their involvement in various physiological roles, inhibitors of different human isoforms of carbonic anhydrase have found clinical applications for the treatment of various diseases including glaucoma, retinopathy, hemolytic anemia, epilepsy, obesity, and cancer. However, clinically used inhibitors of CA (acetazolamide, brinzolamide, dorzolamide, etc.) are not selective causing the undesirable side effects. One of the major hurdles in the design and development of carbonic anhydrase inhibitors is the lack of balanced isoform selectivity which thrived to new chemotypes. In this review, we have compiled the recent strategies of various researchers related to the development of carbonic anhydrase inhibitors belonging to different structural classes like pyrimidine, pyrazoline, selenourea, isatin, indole, etc. This review also summarizes the structure-activity relationships, analysis of isoform selectivity including mechanistic and in silico studies to afford ideas and to provide focused direction for the design and development of novel isoform-selective carbonic anhydrase inhibitors with therapeutic implications.


Subject(s)
Antineoplastic Agents/chemistry , Antioxidants/chemistry , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrases/metabolism , Acetazolamide/chemistry , Acetazolamide/pharmacology , Animals , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Carbonic Anhydrase Inhibitors/pharmacology , Humans , Indoles/chemistry , Isatin/chemistry , Molecular Docking Simulation , Organoselenium Compounds/chemistry , Oxadiazoles/chemistry , Protein Binding , Protein Isoforms/chemistry , Pyrimidines/chemistry , Structure-Activity Relationship , Sulfonamides/chemistry , Sulfonamides/pharmacology , Thiazines/chemistry , Thiazines/pharmacology , Thiophenes/chemistry , Thiophenes/pharmacology , Urea/analogs & derivatives , Urea/chemistry , Benzenesulfonamides
10.
Bioorg Chem ; 104: 104266, 2020 11.
Article in English | MEDLINE | ID: mdl-33142421

ABSTRACT

Replication proteins are sought as a potential targets for antimicrobial agents. Despite their promising target characteristics, only topoisomerase II inhibitors targeting DNA gyrase and/or topoisomerase IV have reached clinical use. Topoisomerases are the enzymes that are essential for cellular functions and various biological activities. A wide range of natural and synthetic compounds have been identified as potential topoisomerase inhibitors but the resistance is most commonly found in these drugs. The emergence of FQ resistance has increased the need for the development of novel topoisomerase inhibitors with efficacy and high potency against FQ-resistant strains. Besides structural modifications of existing FQ scaffolds, novel non-quinolone topoisomerase II inhibitors, known as novel bacterial topoisomerase inhibitors, have been developed which showed remarkable inhibitory activity against DNA gyrase/topoisomerase IV or both with an improved spectrum of antibacterial potency including drug-resistant strains. This review aims to summarize various recent advancements in the medicinal chemistry of topoisomerase inhibitors with the following objectives: (1) To represent inclusive data on types of topoisomerases and various marketed topoisomerase inhibitors as drugs; (2) To discuss the recent advances in the medicinal chemistry of various topoisomerase inhibitors (DNA gyrase and topo IV) belonging to different structural classes as potential antibacterial agents; (3) To summarizes the structure activity relationship (SAR) including in silico and mechanistic studies to afford ideas and to provide focused direction for the development of new chemical entities which are effective against drug-resistant bacterial pathogens and biofilms.


Subject(s)
Anti-Bacterial Agents/pharmacology , DNA Topoisomerases, Type II/metabolism , Topoisomerase II Inhibitors/pharmacology , Anti-Bacterial Agents/chemistry , Chemistry, Pharmaceutical , Dose-Response Relationship, Drug , Molecular Structure , Structure-Activity Relationship , Topoisomerase II Inhibitors/chemistry
11.
Eur J Med Chem ; 205: 112666, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32795767

ABSTRACT

Pyrazolines remain privileged heterocycles in drug discovery. 2-Pyrazoline scaffold has been proven as a ubiquitous motif which is present in a number of pharmacologically important drug molecules such as antipyrine, ramifenazone, ibipinabant, axitinib etc. They have been widely explored by the scientific community and are reported to possess wide spectrum of biological activities. For combating unprecedented diseases and worldwide increasing drug resistance, 2-pyrazoline has been tackled as a fascinating pharmacophore to generate new molecules with improved potency and lesser toxicity along with desired pharmacokinetic profile. This review aims to summarizes various recent advancements in the medicinal chemistry of pyrazoline based compounds with the following objectives: (1) To represent inclusive data on pyrazoline based marketed drugs as well as therapeutic candidates undergoing preclinical and clinical developments; (2) To discuss recent advances in the medicinal chemistry of pyrazoline derivatives with their numerous biological significances for the eradication of various diseases; (3) Summarizes structure-activity relationships (SAR) including in silico and mechanistic studies to afford ideas for the design and development of novel compounds with desired therapeutic implications.


Subject(s)
Drug Discovery , Pyrazoles/chemistry , Pyrazoles/pharmacology , Animals , Humans , Structure-Activity Relationship
12.
Sci Rep ; 10(1): 4834, 2020 03 16.
Article in English | MEDLINE | ID: mdl-32179766

ABSTRACT

The mature mammary gland is made up of a network of ducts that terminates in alveoli. The innermost layer of alveoli is surrounded by the differentiated mammary epithelial cells (MECs), which are responsible for milk synthesis and secretion during lactation. However, the MECs are in a state of active proliferation during pregnancy, when they give rise to network like structures in the mammary gland. Buffalo (Bubalus bubalis) constitute a major source of milk for human consumption, and the MECs are the major precursor cells which are mainly responsible for their lactation potential. The proteome of MECs defines their functional state and suggests their role in various cellular activities such as proliferation and lactation. To date, the proteome profile of MECs from buffalo origin is not available. In the present study, we have profiled in-depth proteome of in vitro cultured buffalo MECs (BuMECs) during active proliferation using high throughput tandem mass spectrometry (MS). MS analysis identified a total of 8330, 5970, 5289, 4818 proteins in four sub-cellular fractions (SCFs) that included cytosolic (SCF-I), membranous and membranous organelle's (SCF-II), nuclear (SCF-III), and cytoskeletal (SCF-IV). However, 792 proteins were identified in the conditioned media, which represented the secretome. Altogether, combined analysis of all the five fractions (SCFs- I to IV, and secretome) revealed a total of 12,609 non-redundant proteins. The KEGG analysis suggested that these proteins were associated with 325 molecular pathways. Some of the highly enriched molecular pathways observed were metabolic, MAPK, PI3-AKT, insulin, estrogen, and cGMP-PKG signalling pathway. The newly identified proteins in this study are reported to be involved in NOTCH signalling, transport and secretion processes.


Subject(s)
Buffaloes/genetics , Buffaloes/physiology , Cell Proliferation/genetics , Epithelial Cells/physiology , Lactation/genetics , Mammary Glands, Human/cytology , Proteins/genetics , Proteome/genetics , Proteomics/methods , Animals , Cell Line , Epithelial Cells/metabolism , Female , Humans , Insulin/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proteins/metabolism , Receptors, Notch/metabolism , Signal Transduction/genetics
13.
Mol Biol Rep ; 46(2): 2243-2257, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30759297

ABSTRACT

MGP-40 is a mammary gland-specific glycoprotein which is expressed during involution and is an important marker for mammary gland apoptosis. It is an inactive chitinase-like protein belonging to Glycosyl Hydrolase family 18. The present study reports sequence characterization, tissue-specific expression analysis, production of recombinant MGP-40 and its mutant (A117D and L119E) in both E. coli and COS1 cells for their chitin-binding and chitinase activity analysis. The cDNA of buffalo MGP-40 was cloned and sequenced which corresponded to 1803 bp with an open reading frame of 1152 bp (361 aa), signal sequence of 63 bp (21 aa), 5' and 3' UTR of 144 bp and 507 bp, respectively. The 3' UTR analysis revealed potential sites for high level expression and stability during involution. The half-life of buffalo MGP-40 was found to be 11.7 h. MGP-40 was highly expressed in mammary gland followed by small intestine, spleen and mammary epithelial cells. The purified recombinant MGP-40 and its mutant expressed in E.coli were observed to bind chitin efficiently, however, no chitinase activity was observed. Further, chitinase activity was also not observed by expressing mutant recombinant MGP-40 in COS1 cells ruling out the possible role of post-translational modifications. Structure-based in-silico mutagenesis by FoldX algorithm showed a drastic decrease in overall fold stability which might be a possible reason for inability to recover its activity. Therefore, chitinase activity could not be restored in MGP-40 even after reverting back two critical residues in active site which may be due to detrimental effect of mutations on structural stability.


Subject(s)
Buffaloes/metabolism , Chitinase-3-Like Protein 1/metabolism , Chitinase-3-Like Protein 1/physiology , Amino Acid Sequence , Animals , Apoptosis/physiology , Buffaloes/genetics , Buffaloes/physiology , COS Cells , Chitinase-3-Like Protein 1/genetics , Chitinases/genetics , Chitinases/metabolism , Chlorocebus aethiops , Cloning, Molecular/methods , DNA, Complementary/genetics , Escherichia coli/genetics , Female , Glycoproteins/genetics , Mammary Glands, Animal/enzymology , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/physiology , Open Reading Frames , Protein Sorting Signals , Recombinant Proteins/genetics
14.
Dev Biol ; 445(2): 145-155, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30448440

ABSTRACT

The mammary gland (MG) is a unique organ responsible for milk synthesis, secretion, and involution to prepare the gland for subsequent lactation. The mammary epithelial cells (MECs), which are the milk synthesizing units of the MG, proliferate, differentiate, undergo apoptosis and regenerate following a cyclic pathway of lactation - involution - lactation, fine-tuning these molecular events through hormones, growth factors and other regulatory molecules. The developmental stages of the MG are embryonic, prepubertal, pubertal, pregnancy, lactation and involution, with major developmental processes occurring after puberty. The involution stage includes interesting physiological processes such as MEC apoptosis, matrix remodeling, and the generation of cells regaining the shape of a virgin MG. Signal transducer and activator of transcription 3 (STAT3) is the established master regulator of this process and aberrant expression of STAT3 leads to subnormal involution and may induce neoplasia. Several studies have reported on the molecular mechanism of MG involution with substantial knowledge being gained about this process; however, a deep understanding of this phenomenon has yet to be attained. This review focuses deeply on the molecular details of post-lactational regression, the signaling pathways involved in the lactation-involution cycle, and the latest developments in STAT3-associated MG neoplasia. Deep insight into the involution process will pave the way towards understanding the biology, apoptosis, and oncogenesis of the MG.


Subject(s)
Mammary Glands, Animal/growth & development , Mammary Glands, Animal/physiology , Animals , Apoptosis/genetics , Breast Neoplasms/etiology , Cytokines/genetics , Cytokines/physiology , Disease Progression , Epithelial Cells/cytology , Epithelial Cells/physiology , Extracellular Matrix/physiology , Female , Glycolipids/metabolism , Glycoproteins/metabolism , Humans , Lactation/genetics , Lactation/physiology , Leukemia Inhibitory Factor/genetics , Leukemia Inhibitory Factor/physiology , Lipid Droplets , Mammary Glands, Animal/anatomy & histology , Mice , MicroRNAs/genetics , Models, Biological , Pregnancy , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/physiology , Signal Transduction , Transforming Growth Factor beta/physiology
15.
Apoptosis ; 21(2): 209-24, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26659075

ABSTRACT

MGP-40 is a chitinase-like protein which is over expressed during mammary gland involution. However, its physiological function in the mammary gland is poorly understood. In the present investigation, we have reported the functional significance of buffalo specific MGP-40 in the mammary gland by using an in vitro model of the buffalo mammary epithelial cell (BuMEC) line. MGP-40 was highly up regulated in BuMECs in serum starved condition as well as after treatment with prolactin suggesting its role in the stress response. Subsequently, to study the effect of MGP-40 on BuMECs, the cells were transfected with a mammalian expression construct of pCI neo harboring MGP-40 gene. It was observed that over expression of MGP-40 enhanced proliferation of BuMECs and protected the cells from apoptosis under serum free condition. In contrast, MGP-40 attenuated the mitogenic effect of insulin in BuMECs. Besides, over expression of the MGP-40 reduced dome formation, acinar polarization and casein synthesis in BuMECs in the presence of lactogenic hormones, it also induced Stat3 phosphorylation and epithelial to mesenchymal transition (EMT) -like features. Together, our data suggest that MGP-40 is involved in protection of BuMECs under stress conditions, inhibits cellular differentiation and induces EMT-like features. A schematic diagram depicting possible association of MGP-40 in various molecular pathways has been presented.


Subject(s)
Apoptosis , Epithelial Cells/physiology , Glycoproteins/metabolism , Animals , Buffaloes , Caseins/genetics , Caseins/metabolism , Cell Polarity , Cell Proliferation , Cell Shape , Cells, Cultured , Chitinases/genetics , Chitinases/metabolism , Female , Glycoproteins/genetics , Mammary Glands, Animal/cytology , Prolactin/physiology , Transcriptional Activation
16.
J Proteomics ; 119: 100-11, 2015 Apr 24.
Article in English | MEDLINE | ID: mdl-25661041

ABSTRACT

Mammary gland is an exocrine and sebaceous gland made up of branching network of ducts that end in alveoli. Milk is synthesized in the alveoli and secreted into alveolar lumen. Mammary gland represents an ideal system for the study of organogenesis that undergoes successive cycles of pregnancy, lactation and involution. To gain insights on the molecular events that take place in pubertal and lactating mammary gland, we have identified 43 differentially expressed proteins in mammary tissue of heifer (non-lactating representing a virgin mammary gland), and lactating buffaloes (Bubalus bubalis) by 2D-difference gel electrophoresis (2D-DIGE) and mass spectrometry. Twenty one proteins were upregulated during lactation whereas 8 proteins were upregulated in heifer mammary gland significantly (p<0.05). Bioinformatics analyses of the identified proteins showed that a majority of the proteins are involved in metabolic processes. The differentially expressed proteins were validated by real-time PCR and Western blotting. We observed differential expressions of certain new proteins including EEF1D, HSPA5, HSPD1 and PRDX6 during lactation which have not been reported before. The differentially expressed proteins were mapped to available biological pathways and networks involved in lactation. This study signifies the importance of some proteins which are preferentially expressed during lactation and in heifer mammary gland. BIOLOGICAL SIGNIFICANCE: This work is important because we have generated information in water buffalo (B. bubalis) for the first time which is the major milk producing animal in Indian Subcontinent. Out of a present production of 133milliontons of milk produced in India, contribution of buffalo milk is around 54%. Its physiology is somewhat different from the lactating cows. Buffalo milk composition varies from cow milk in terms of higher fat and total solid content, which confers an advantage in preparation of specialized cheese, curd and other dairy products. Being a major milk producing animal in India it is highly essential to understand the lactation associated proteins in the mammary gland of buffalo. In the present investigation our attempt has been to identify new protein evidences which are expressed in lactating buffalo mammary gland and have not been reported before. The findings reported in the present study will help in understanding the lactation biology of buffalo mammary gland in particular and the mammary gland biology in general.


Subject(s)
Buffaloes/metabolism , Gene Expression Regulation/physiology , Lactation/physiology , Mammary Glands, Animal/metabolism , Pregnancy/metabolism , Proteome/metabolism , Animals , Female
SELECTION OF CITATIONS
SEARCH DETAIL
...