Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 17012, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37813908

ABSTRACT

Ocimum aristatum, commonly known as O. stamineus, has been widely studied for its potential as an herbal medicine candidate. This research aims to compare the efficacy of water and 100% ethanolic extracts of O. stamineus as α-glucosidase inhibitors and antioxidants, as well as toxicity against zebrafish embryos. Based on the study findings, water extract of O. stamineus leaves exhibited superior inhibition activity against α-glucosidase, ABTS, and DPPH, with IC50 values of approximately 43.623 ± 0.039 µg/mL, 27.556 ± 0.125 µg/mL, and 95.047 ± 1.587 µg/mL, respectively. The major active compounds identified in the extract include fatty acid groups and their derivates such as linoleic acid, α-eleostearic acid, stearic acid, oleanolic acid, and corchorifatty acid F. Phenolic groups such as caffeic acid, rosmarinic acid, 3,4-Dihydroxybenzaldehyde, norfenefrine, caftaric acid, and 2-hydroxyphenylalanine and flavonoids and their derivates including 5,7-Dihydroxychromone, 5,7-Dihydroxy-2,6-dimethyl-4H-chromen-4-one, eupatorin, and others were also identified in the extract. Carboxylic acid groups and triterpenoids such as azelaic acid and asiatic acid were also present. This study found that the water extract of O. stamineus is non-toxic to zebrafish embryos and does not affect the development of zebrafish larvae at concentrations lower than 500 µg/mL. These findings highlight the potential of the water extract of O. stamineus as a valuable herbal medicine candidate, particularly for its potent α-glucosidase inhibition and antioxidant properties, and affirm its safety in zebrafish embryos at tested concentrations.


Subject(s)
Orthosiphon , Plants, Medicinal , Animals , Antioxidants/chemistry , Plant Extracts/toxicity , Plant Extracts/analysis , Orthosiphon/chemistry , Zebrafish , alpha-Glucosidases , Plants, Medicinal/chemistry , Phytochemicals/toxicity , Water
2.
Saudi Dent J ; 34(8): 699-707, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36570577

ABSTRACT

Uncontrolled bleeding is linked to higher treatment costs, risk of post-surgical infection and increased disease and death. Hemostatic agents are used to treat excessive bleeding. A good hemostatic agent controls bleeding effectively, reduces the need for blood transfusion, removes the need for systemic drugs to control bleeding, results in shorter surgery time, and reduces the cost and length of hospital stay of the patient. Gelatin-based hemostatic agents have been widely used in medical and dental procedures, owing to their biodegradability and biocompatibility, as well as availability and low cost of raw materials. In this narrative literature review, we discuss the background and different types of gelatin-based hemostatic agents in medical and dental procedures, the comparison of gelatin-based and non-gelatin-based hemostatic agents, and the usage and development of enhanced or novel gelatin-based hemostatic agents. Gelatin-based hemostatic agents are effective and important part of bleeding control, as evidenced by its wide application in medicine and dentistry. The development of novel combination gelatin-based hemostatic agents has much potential for effective control of excessive bleeding.

3.
Polymers (Basel) ; 14(20)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36297993

ABSTRACT

Gelatin is used as an additive in medicine, food, and cosmetics. Gelatin from goatskin is a new excipient that has not been explored by researchers, including for hard-shell capsules. The aim of this study was to evaluate and characterize the hard-shell capsules produced from goatskin gelatin. The goatskin gelatin was extracted by an acid hydrolysis method, and the functional properties were investigated. Hard-shell capsules were then produced from goatskin gelatin, evaluated, and characterized. The gelatin extracted from goatskin had 56.9% ± 0.95 clarity and a pH of 5.11 ± 0.09, 97.51% ± 1.1 protein content, 9.23% ± 0.08 water content, 0.18% ± 0.07 ash content, 2.08% ± 0.35 fat content, gel strength of 298 ± 2.64 gbloom, and viscosity of 27.33 ± 2.07 mPs. The gelatin has met the requirements to be made into hard-shell capsules. The average weight of the hard-shell capsules produced was 96.9 mg with 8.69 standard deviation. The average size of the body and cap length was 18.84 ± 0.64 mm and 10.98 ± 0.30 mm, respectively. The results of capsule evaluation and characterization were as follows: the pH was 4.82 ± 1,27, water content was 10.03 ± 0.21, disintegration time was 4.02 ± 2.09 min, and there was no microbial growth. Thus, the capsules made have met the requirements and can be produced in a large quantity.

4.
Trop Life Sci Res ; 33(2): 133-153, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35966272

ABSTRACT

Muslims are prohibited from consuming products that contain pig products and their derivatives, including porcine gelatin. Medical and dental products are not exempt from the use of gelatin in their formulation. This study employs attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) coupled with principal component analysis (PCA) to detect and distinguish between porcine and bovine gelatins in dental materials. The results were further verified by polymerase chain reaction (PCR) assay. Species-specific primers targeting the 212 bp porcine cytochrome b and 271 bp bovine cytochrome b genes were used to amplify DNA in nine dental material samples. Detection and distinction of gelatin standards (bovine and porcine) against gelatin present in the dental materials was achieved using ATR-FTIR combined with PCA within wavenumber 1756 cm-1-1584 cm-1 (Amide I and Amide II). The detection limit for DNA was 0.001 ng/µL and 0.0001 ng/µL for bovine and porcine gelatins, respectively. Using PCR, one sample, BDM 01, was found to contain both porcine and bovine DNA, while one sample (BDM 14) was found to be positive for bovine DNA. The findings suggest that ATR-FTIR combined with PCA and conventional PCR are applicable for the identification of porcine and bovine gelatin in dental materials.

5.
F1000Res ; 11: 1412, 2022.
Article in English | MEDLINE | ID: mdl-37767070

ABSTRACT

Background: Numerous studies have been carried out on the impacts of brand equity and service quality of higher education institutions (HEIs) on their reputation and students' satisfaction. This research aimed to compare the impact of brand equity and service quality on universities' reputations, namely Universitas Islam Negeri (UIN) in Indonesia and International Islamic University Malaysia (IIUM) in Malaysia, and Indonesian students' intention to choose the universities, which is moderated by study expense (price). UIN and IIUM are HEIs with a similar university concept, and Indonesian students have recently shown a high interest in them. The two universities have faculties not only in the field of Islamic studies but in general fields of studies as well, which are usually held by non-Islamic Universities. Therefore, their competitiveness against non-Islamic universities, especially the University of Indonesia (UI) has increased. Methods: The statistical measurement tool used was structural equation modeling (SEM). The number of items stated in the questionnaire was 45. Therefore, minimum data to be collected were 5 × 45 or 225 which rounded up to 228 from Indonesian students at UIN and IIUM (114 UIN students, and 114 Indonesian student respondents from IIUM). Results: The study results show that the universities' reputations are strongly affected by their brand equity and service quality, which then affect students' intention to choose the universities. Students had a higher intention to choose IIUM than UIN. The limitation of this research is that the effect of study expense on the intention of Indonesian students to study at UIN or IIUM has not yet been conducted. It will be conducted in the next study. Conclusions: These results are expected to be useful to UIN, IIUM, and especially Politeknik Negeri Jakarta (PNJ) in determining a strategy to enhance their reputations and the intention of Indonesian students to study there.


Subject(s)
Intention , Islam , Humans , Universities , Malaysia , Students
6.
F1000Res ; 10: 485, 2021.
Article in English | MEDLINE | ID: mdl-35083034

ABSTRACT

Background:  Spirulina platensis contains several bioactive molecules such as phenol, flavonoid and phycocyanin pigments. This study unveils total phenol, flavonoid, antioxidant activity, phycocyanin content and evaluated encapsulation efficiency from  Ocimum basilicum intervention on  S. platensis. O. basilicum intervention aims to reduce unpleasant odors from  S. platensis that will increase consumption and increase bioactive compounds.   Methods: The intervention was carried out by soaking a  S. platensis control sample (SP) in  O. basilicum with a ratio of 1:4 (w/v) and it was then dried (DSB) and microencapsulated by freeze drying methods (MSB) using a combination of maltodextrin and gelatin. Total flavonoid and phenolic analysis with curve fitting analysis used a linear regression approach. Antioxidant activity of samples was analysed with the 2,2'-azino-bis-3-3thylbenzthiazoline-6-sulphonic acid (ABTS) method. Data were analysed using ANOVA at significance level (p < 0.05) followed by Tukey test models using SPSS v.22.  Results: The result of this study indicated that  O. basilicum intervention treatment (DSB) has the potential to increase bioactive compounds such as total phenol, antioxidant activity and phycocyanin, and flavonoid content. Intervention of  O. basilicum on  S. platensis (DSB) significantly increases total phenol by 49.5% and phycocyanin by 40.7%. This is due to the phenol and azulene compounds in  O. basilicum which have a synergistic effect on phenol and phycocyanin in  S. platensis. Microencapsulation using a maltodexrin and gelatin coating is effective in phycocyanin protection and antioxidant activity with an encapsulation efficiency value of 71.58% and 80.5%.   Conclusion: The intervention of  O. basilicum on  S. platensis improved the total phenol and phycocyanin content and there is potential for a pharmaceutical product for a functional food and pharmaceutical product.


Subject(s)
Ocimum basilicum , Phycocyanin , Antioxidants/pharmacology , Flavonoids , Gelatin , Phenol , Phenols , Powders , Spirulina
7.
Jpn Dent Sci Rev ; 56(1): 147-154, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33204370

ABSTRACT

Managing a bleeding patient can be a challenge during dental surgery. Profuse hemorrhage due to platelet defects, coagulation disorders, vascular anomalies, medication-induced patients, as well as inherited bleeding ailments result in soft tissue hematoma, septic shock, compromised airway, and in some severe cases, death could occur. A vast array of surgical hemostatic agents are available to stop bleeding, including chitosan-based hemostatic agents. Chitosan has an advantage over other topical hemostatic materials for its ability to promote shorter bleeding times and assist in healing. Massive behind-the-scene research and development efforts are ongoing to increase the performance of chitosan as a hemostatic agent. Numerous studies on chitosan use in dental hemostasis have registered it as being safe, biodegradable, biocompatible, promoting healing, antimicrobial and bioactive. This article reviews the application of chitosan in managing hemostasis in dental patients.

8.
Saudi J Biol Sci ; 27(6): 1596-1601, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32489300

ABSTRACT

Gelatin is used as an ingredient in both food and non-food industries as a gelling agent, stabilizer, thickener, emulsifier, and film former. Porcine skins, bovine hides, and cattle bones are the most common sources of gelatin. However, mammalian gelatins are rejected by some consumers due to social, cultural, religious, or health-related concerns. In the present study, gelatin was obtained from camel skin as an alternative source using a combination of processing steps. Central composite design combined with response surface methodology was used to achieve high gelatin yields under different extraction conditions: temperatures of 40, 60, and 80 °C; pH values of 1, 4, and 7; and extraction times of 0.5, 2.0, and 3.5 min. Maximum gelatin yield from camel skin (29.1%) was achieved at 71.87 °C and pH 5.26 after 2.58 min. The extracted gelatin samples were characterized for amino acid profile, foaming capacity, film formation, foam stability, and gel strength (Bloom value). Gelatin nanoparticles were produced, and their morphology and zeta potential were determined. Bloom value of the camel skin gelatin was 340 g. Amino acid analysis revealed that the extracted gelatin showed high glycine and proline contents. Analysis of camel skin gelatin nanoparticle and functional properties revealed high suitability for food and non-food applications, with potential use in the growing global halal food market.

9.
Toxicon ; 181: 57-68, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32353570

ABSTRACT

This study aimed to identify the bioactive compounds of the ethyl acetate extract of Aspergillus niger SH2-EGY using GC-MS and to evaluate their protective role against aflatoxin B1 (AFB1)-induced oxidative stress, genotoxicity and cytotoxicity in rats. Six groups of male Sprague-Dawley rats were treated orally for 4 weeks included the control group, AFB1-treated group (80 µg/kg b.w); fungal extract (FE)-treated groups at low (140) or high dose (280) mg/kg b.w and the groups treated with AFB1 plus FE at the two tested doses. The GC-MS analysis identified 26 compounds. The major compounds found were 1,2,3,4,6-Penta-trimethylsilyl Glucopyranose, Fmoc-L-3-(2-Naphthyl)-alanine, D-(-)-Fructopyranose, pentakis (trimethylsilyl) ether, bis (2-ethylhexyl) phthalate, trimethylsilyl ether-glucitol, and octadecanamide, N-(2- methylpropyl)-N-nitroso. The in vivo results showed that AFB1 significantly increased serum ALT, AST, creatinine, uric acid, urea, cholesterol, triglycerides, LDL, carcinoembryonic antigen, alpha-fetoprotein, interleukin-6, Malondialdehyde, nitric oxide, Bax, caspase-3 and P53 mRNA expression, chromosomal aberrations and DNA fragmentation. It decreased serum TP, albumin, HDL, Bcl-2 mRNA expression, hepatic and renal TAC, SOD and GPx content and induced histological changes in the liver and kidney. FE prevented these disturbances in a dosage-dependent manner. It could be concluded that A. niger SH2-EGY extract is safe a promising agent for pharmaceutical and food industries.


Subject(s)
Aflatoxin B1/toxicity , Antioxidants/therapeutic use , Aspergillus niger , Animals , DNA Fragmentation/drug effects , Inactivation, Metabolic/drug effects , Male , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley
10.
Molecules ; 24(5)2019 Mar 07.
Article in English | MEDLINE | ID: mdl-30866561

ABSTRACT

Fucoxanthin has interesting anticancer activity, but is insoluble in water, hindering its use as a drug. Microencapsulation is used as a technique for improving drug delivery. This study aimed to formulate fucoxanthin-loaded microspheres (F-LM) for anticancer treatment of H1299 cancer cell lines and optimize particle size (PS) and encapsulation efficiency (EE). Using response surface methodology (RSM), a face centered central composite design (FCCCD) was designed with three factors: Polyvinylalcohol (PVA), poly(d,l-lactic-co-glycolic acid) (PLGA), and fucoxanthin concentration. F-LM was produced using a modified double-emulsion solvent evaporation method. The F-LM were characterized for release profile, release kinetics, and degradation pattern. Optimal F-LM PS and EE of 9.18 µm and 33.09%, respectively, with good surface morphology, were achieved from a 0.5% (w/v) PVA, 6.0% (w/v) PLGA, 200 µg/mL fucoxanthin formulation at a homogenization speed of 20,500 rpm. PVA concentration was the most significant factor (p < 0.05) affecting PS. Meanwhile, EE was significantly affected by interaction between the three factors: PVA, PLGA, and fucoxanthin. In vitro release curve showed fucoxanthin had a high burst release (38.3%) at the first hour, followed by a sustained release stage reaching (79.1%) within 2 months. Release kinetics followed a diffusion pattern predominantly controlled by the Higuchi model. Biodegradability studies based on surface morphology changes on the surface of the F-LM, show that morphology changed within the first hour, and F-LM completely degraded within 2 months. RSM under FCCCD design improved the difference between the lowest and highest responses, with good correlation between observed and predicted values for PS and EE of F-LM.


Subject(s)
Antineoplastic Agents/chemistry , Drug Compounding/methods , Xanthophylls/chemistry , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Humans , Microspheres , Particle Size , Solubility , Xanthophylls/pharmacokinetics
11.
J Diet Suppl ; 15(6): 805-813, 2018 Nov 02.
Article in English | MEDLINE | ID: mdl-29185824

ABSTRACT

Astaxanthin is one of the main carotenoid pigments. It has beneficial effects on the immune system of the human body due to its powerful antioxidant properties. The application of this bioactive compound can be found to be significant in the food, pharmaceutical, and cosmetics industries. The aim of this research was to investigate astaxanthin yield from six species of Malaysian shrimp carapace. Six types of shrimp species-Parapenaeopsis sculptili, Metapenaeus lysianassa, Macrobrachium rosenbergii, Metapenaeopsis hardwickii, Penaeus merguiensis, and Penaeus monodon-were used to investigate total carotenoid content and astaxanthin yield. The investigation was carried out using chemical extraction and high-pressure processing (HPP) methods at 210 MPa, for a period of 10 min with a solvent mixture of acetone and methanol (7:3, v/v). HPP was proven to have a significant impact in increasing the total carotenoid content and astaxanthin yield. The highest total carotenoid content and astaxanthin yield is shown to be contained in the Penaeus monodon species. Total carotenoid was increased from 46.95 µg/ml using chemical extraction to 68.26 µg/ml using HPP; yield of astaxanthin was increased from 29.44 µg/gdw using chemical extraction to 59.9744 µg/gdw using HPP. Therefore, comparison between the HPP and chemical extraction methods showed that HPP is more advantageous with higher astaxanthin yield, higher quality, and shorter extraction time.


Subject(s)
Animal Shells/chemistry , Penaeidae , Acetone , Animals , Carotenoids/analysis , Crustacea , Methanol , Pressure , Solvents , Species Specificity , Xanthophylls/analysis , Xanthophylls/isolation & purification
12.
Int J Food Sci ; 2017: 2576394, 2017.
Article in English | MEDLINE | ID: mdl-29119103

ABSTRACT

The consumers interest in gelatin authentication is high due to allergic reactions and adoption of Halal and Kosher eating cultures. This research investigated browning development due to enzymatic hydrolysis and presence of Cu2+ during Maillard reaction of fish, porcine, and bovine gelatin. The rate of browning index samples showed two phases-rapid and slow-for all the gelatin samples and changes in browning index (ΔBindex) were increased (>100%) in presence of Cu2+. ΔBindex of enzymatic hydrolysates were different among the gelatin species. Fish gelatin hydrolyzate displayed > 400% increase in browning in the first six hours compared to gelatin hydrolyzates from porcine (200%) and bovine (140%). The variation in ΔBindex of chymotrypsin digested gelatin in presence of Cu2+ could be valuable for the development of an efficient UV-spectroscopic method for gelatin differentiation.

13.
J Oleo Sci ; 65(8): 641-53, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-27430384

ABSTRACT

Microencapsulation is a promising approach in drug delivery to protect the drug from degradation and allow controlled release of the drug in the body. Fucoxanthin-loaded microsphere (F-LM) was fabricated by two step w/o/w double emulsion solvent evaporation method with poly (L-lactic-coglycolic acid) (PLGA) as carrier. The effect of four types of surfactants (PVA, Tween-20, Span-20 and SDS), homogenization speed, and concentration of PLGA polymer and surfactant (PVA), respectively, on particle size and morphology of F-LM were investigated. Among the surfactants tested, PVA showed the best results with smallest particle size (9.18 µm) and a smooth spherical surface. Increasing the homogenization speed resulted in a smaller mean F-LM particle size [d(0.50)] from 17.12 to 9.18 µm. Best particle size results and good morphology were attained at homogenization speed of 20 500 rpm. Meanwhile, increased PLGA concentration from 1.5 to 11.0 (% w/v) resulted in increased F-LM particle size. The mean particle size [d(0.5)] of F-LM increased from 3.93 to 11.88 µm. At 6.0 (% w/v) PLGA, F-LM showed the best structure and external morphology. Finally, increasing PVA concentration from 0.5 to 3.5 (% w/v) resulted in decreased particle size from 9.18 to 4.86 µm. Fucoxanthin characterization before and after microencapsulation was carried out to assess the success of the microencapsulation procedure. Thermo gravimetry analysis (TGA), glass transition (Tg) temperature of F-LM and fucoxanthin measured using DSC, ATR-FTIR and XRD indicated that fucoxanthin was successfully encapsulated into the PLGA matrix, while maintaining the structural and chemical integrity of fucoxanthin.


Subject(s)
Drug Compounding , Microspheres , Solvents/chemistry , Xanthophylls/chemistry , Drug Carriers/chemistry , Emulsions/chemistry , Lactic Acid/chemistry , Particle Size , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Surface Properties , Surface-Active Agents/chemistry , Volatilization
14.
J Oleo Sci ; 63(8): 787-94, 2014.
Article in English | MEDLINE | ID: mdl-25007746

ABSTRACT

Aqueous extracts obtained from five Malaysian brown seaweeds, Sargassum duplicatum, Sargassum binderi, Sargassum fulvellum, Padina australis, and Turbinaria turbinata, were investigated for their abilities to inhibit nitric oxide (NO) production in lipopolysaccharide (LPS)-induced macrophage RAW 264.7 cell lines as well as to determine their chemical composition. The percentage yield of extracts varied among species, with P. australis having the lowest yield and T. turbinata having the highest yield. The chemical compositions of the extracts showed that the percentage of sulfate ions as well as uronic acid and total sugar content varied significantly. All extracts contained high fucose and inhibited NO secretion in a dose-dependent manner. Extracts of P. australis and T. turbinata dosed at 200 µg/mL were able to inhibit NO secretion by > 75%. Furthermore, cytotoxicity assays revealed that some extracts were moderately toxic, while others were not. Based on these results, brown seaweed of Malaysian origin should be investigated for the production of additional anti-inflammatory compounds.


Subject(s)
Lipopolysaccharides/adverse effects , Macrophages/drug effects , Macrophages/metabolism , Nitric Oxide/metabolism , Plant Extracts/pharmacology , Plant Extracts/toxicity , Seaweed/chemistry , Animals , Anti-Inflammatory Agents , Cell Line , Depression, Chemical , Dose-Response Relationship, Drug , Malaysia , Mice , Plant Extracts/chemistry , Water
15.
J Oleo Sci ; 63(8): 761-7, 2014.
Article in English | MEDLINE | ID: mdl-25007748

ABSTRACT

Carotenoids are antioxidants with pharmaceutical potential. The major carotenoids important to humans are α-carotene, ß-carotene, lycopene, lutein, zeaxanthin, and ß-cryptoxanthin. Some of the biological functions and actions of these individual carotenoids are quite similar to each other, whereas others are specific. Besides genotype and location, other environmental effects such as temperature, light, mineral uptake, and pH have been found affect carotenoid development in plant tissues and organs. Therefore, this research investigated the effects of the season and storage periods during postharvest handling on the accumulation of carotenoid in pumpkin. This study shows that long-term storage of pumpkins resulted in the accumulation of lutein and ß-carotene with a slight decrease in zeaxanthin. The amounts of ß-carotene ranged from 174.583±2.105 mg/100g to 692.871±22.019 mg/100g, lutein from 19.841±9.693 mg/100g to 59.481±1.645 mg/100g, and zeaxanthin from not detected to 2.709±0.118 mg/100g. The pumpkins were collected three times in a year; they differed in that zeaxanthin was present only in the first season, while the amounts of ß-carotene and lutein were the highest in the second and third seasons, respectively. By identifying the key factors among the postharvest handling conditions that control specific carotenoid accumulations, a greater understanding of how to enhance the nutritional values of pumpkin and other crops will be gained. Postharvest storage conditions can markedly enhance and influence the levels of zeaxanthin, lutein, and ß-carotene in pumpkin. This study describes how the magnitudes of these effects depend on the storage period and season.


Subject(s)
Carotenoids/metabolism , Cucurbita/chemistry , Cucurbita/metabolism , Food Storage , Seasons , Hydrogen-Ion Concentration , Light , Lutein/metabolism , Minerals/metabolism , Nutritive Value , Temperature , Time Factors , Zeaxanthins/metabolism , beta Carotene/metabolism
16.
Appl Microbiol Biotechnol ; 98(17): 7283-97, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24965557

ABSTRACT

This review highlights the use of bromelain in various applications with up-to-date literature on the purification of bromelain from pineapple fruit and waste such as peel, core, crown, and leaves. Bromelain, a cysteine protease, has been exploited commercially in many applications in the food, beverage, tenderization, cosmetic, pharmaceutical, and textile industries. Researchers worldwide have been directing their interest to purification strategies by applying conventional and modern approaches, such as manipulating the pH, affinity, hydrophobicity, and temperature conditions in accord with the unique properties of bromelain. The amount of downstream processing will depend on its intended application in industries. The breakthrough of recombinant DNA technology has facilitated the large-scale production and purification of recombinant bromelain for novel applications in the future.


Subject(s)
Ananas/enzymology , Biotechnology/methods , Bromelains/isolation & purification , Bromelains/metabolism
17.
J Oleo Sci ; 56(3): 107-13, 2007.
Article in English | MEDLINE | ID: mdl-17898471

ABSTRACT

Total lipid contents and fatty acid composition of 13 marine fish species namely, "jenahak" (Lutianus agentimaculatus), "kebasi" (Anadontostoma chacunda), "duri" (Arius cumatranus), "tenggiri batang" (Scomberomorus commersoni), "kembong" (Rastrelliger kanagurta), "kintan" or "sebalah" (Psettodes crumei), "kerisi" (Pristipomodes typus), "kerapu" (Epinephelus sexfasciatus), "gelama kling" (Sciaena dussumieri), "malong" (Congresax talabon), "laban" (Cynoglossus lingua), "yu 9" (Scolidon sorrakowah) and "bagi" (Aacnthurs nigrosis) commonly found in Pulau Tuba, one of the islands surrounding the popular tourist destination Langkawi in Malaysia were determined. All fish showed a considerable amount of unsaturated fatty acids particularly those with 4, 5 and 6 double bonds. Two physiologically important n-3 polyunsaturated fatty acids (PUFAs), i.e. eicosapentaenoic acid (EPA) and docasahaexaenoic acid (DHA), made up of more than 50% of the total PUFAs. For saturated fatty acids, palmitic was found to be the major one in all types of fish studied. Based on DHA, EPA and arachidonic acid (AA) contents, "gelama kling" was found to be the best source (23, 11 and 7%, respectively) followed by "kerapu" (21, 10, 9%) and "sebalah" (19, 14, 4%).


Subject(s)
Fatty Acids, Unsaturated/analysis , Fish Products/analysis , Food Analysis , Animals , Fishes , Malaysia
18.
Asia Pac J Clin Nutr ; 14(4): 402-13, 2005.
Article in English | MEDLINE | ID: mdl-16326648

ABSTRACT

Antioxidants are important inhibitory compounds against the oxidative deterioration of food. This study investigated the effects of various phytochemical antioxidant systems [oleoresin rosemary (OR), oleoresin sage (OS) and citric acid (CA)] on the physico-chemical characteristics of refined, bleached and deodorized (RBD) palm olein during the frying of potato chips. The effects of various mixtures of the antioxidants on the oil was also studied in repeated deep frying. The response surface methodology was used to optimize the composition of mixed antioxidants used. A comparative study was carried out with synthetic antioxidants. Samples of the oil after frying were analyzed for different physical and chemical properties. OR and OS were found to be effective phytochemical antioxidants protecting RBD palm olein against oxidative deterioration during frying.


Subject(s)
Antioxidants/pharmacology , Cooking , Food Technology , Hot Temperature , Plant Extracts/pharmacology , Plant Oils/chemistry , Citric Acid/pharmacology , Dose-Response Relationship, Drug , Drug Combinations , Humans , Oxidation-Reduction , Palm Oil , Rosmarinus/chemistry , Salvia officinalis/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...