Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 16(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37687427

ABSTRACT

This work reports on the new chemical dosimeters for UV radiation dose measurements on coral reefs and in seawater. The proposed dosimeters can measure the actual dose of UV radiation, which consists of 95% UVA and 5% UVB radiation, unlike the currently-used radiometers in marine and ocean waters that measure the dose of UVA and UVB radiation separately. The dosimeters are composed of water, poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (Pluronic F-127) as a gel matrix, and 2,3,5-triphenyltetrazolium chloride (TTC) as a UV radiation-sensitive compound. In the work, the dosimeters were characterised in terms of their response to the dose of UV radiation depending on the TTC concentration and the irradiation and storage conditions of the dosimeters. The stability of the dosimeters over time was also examined. The obtained results indicate that the TTC-Pluronic F-127 dosimeters can be used to measure absorbed doses of UV radiation in the saltwater environment. The developed dosimeters with a concentration of 0.1% TTC can be used up to 5 J/cm2, which predisposes them to UV radiation measurements at a depth of more than 10 m in sea and ocean waters in 10-min intervals during all months throughout the year.

2.
Materials (Basel) ; 15(7)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35407878

ABSTRACT

This work reports on a new TBO-Pluronic F-127 three-dimensional (3D) gel dosimeter for UV light dose distribution measurements. The optimal gel composition was found to be 60 µM Toluidine Blue O (TBO), which acts as a UV-sensitive compound; 5% w/w hydrogen peroxide (H2O2), which is necessary for initiation of TBO photodegradation and 25% w/w poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (Pluronic F-127), which forms a physical gel matrix. The dosimeter becomes discoloured when exposed to UV radiation and a discolouration is the more intense, the higher the absorbed dose is. The samples after irradiation with UVA, UVB and UVC radiation were measured using UV-Vis spectrophotometry to obtain the basic dose-response characteristic of the dosimeter, including dose sensitivity, linear and dynamic dose range, threshold dose, stability over time and dose-response for fractioned and non-fractioned doses. Additionally, the TBO-Pluronic F-127 gel dosimeter was investigated for spatial stability and the ability to measure the dose distribution of UV radiation. The results obtained indicate that the TBO-Pluronic F-127 dosimeter is a promising UV sensor and 2D/3D UV dosimeter.

3.
Materials (Basel) ; 15(7)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35407883

ABSTRACT

This work presents the features of the PABIGnx 3D polymer gel dosimeter. It consists of two cross-linkers: poly(ethylene glycol) diacrylate (PEGDA), as one biacrylic component, and N,N'-methylenebisacrylamide (MBA), which is another cross-linker often used in 3D dosimeters. Additionally, it contains oxygen scavenges of copper sulfate pentahydrate and ascorbic acid. All ingredients are embedded in a physical gel matrix of gelatine. Upon irradiation, the biacrylic cross-linking agents (PEGDA and MBA) undergo radical polymerisation and cross-linking, which is manifested by the appearance of the opacity of the intensity related to the absorbed dose. PABIGnx was irradiated with an oncological source of ionising radiation, and analysed by using a nuclear magnetic resonance (0.5 T). The following characteristics were obtained: (i) linear and dynamic dose-response of 0.5 to ~18 Gy and 40 Gy, respectively, (ii) dose sensitivity of 0.071 ± 0.001 Gy-1 s-1, (iii) integral 3D dose distribution for at least 24 days after irradiation, (iv) adequate batch-to-batch reproducibility, (v) dose-response independent of irradiation with 6 MV photons, 15 MV photons, 6 MV photons FFF of 0.0168-0.1094 Gy/s dose rates, and (vi) soft tissue equivalence. The study showed that the features of PABIGnx confirm its suitability for use in 3D radiotherapy dosimetry.

4.
Materials (Basel) ; 14(14)2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34300879

ABSTRACT

This paper aims to explain the phenomenon of laser light trapping (LLT) in a 3D polymer gel dosimeter. A VIC-T polymer gel dosimeter containing 17% N-vinylpyrrolidone, 8% N,N'-methylenebisacrylamide, 12% tert-butyl alcohol, 5% gelatine, 0.02% hydroquinone and 14 mM tetrakis(hydroxymethyl)phosphonium chloride was used in this study. It was exposed to green laser light with a wavelength of 532 nm. A film was recorded during the exposure. After exposure, Raman spectroscopy was used to study the reactions taking place inside the dosimeter. The obtained results were used to explain what the LLT phenomenon is, what are the consequences for the dosimeter in which such a phenomenon occurs, and what dosimeter components play an important role in the occurrence of LLT. In addition, the conditions under which 3D polymer gel dosimeters can be measured using optical computed tomography at short wavelengths of visible laser light are indicated.

5.
Materials (Basel) ; 14(12)2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34205722

ABSTRACT

This work reports on the surface-modified woven fabrics for use as UV radiation sensors. The cotton and polyamide fabrics were printed with radiochromic hydrogels using a screen-printing method. The hydrogels used as a printing paste were composed of water, poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (Pluronic F-127) as a gel matrix and nitro blue tetrazolium chloride as a radiation-sensitive compound. The development of the hydrogels' colour occurs after exposure to UV radiation and its intensity increases with increasing absorbed dose. The features of the NBT-Pluronic F-127 radiochromic hydrogels and the fabrics printed with the hydrogels were examined using UV-Vis and reflectance spectrophotometry as well as scanning electron microscopy (SEM). The effects of NBT concentration and UV radiation type (UVA, UVB, UVC) on dose responses of the hydrogels and printed fabrics were also examined. The results obtained reveal that the fabrics printed with NBT-Pluronic F-127 hydrogels can be potentially useful as UV radiation sensors.

6.
Materials (Basel) ; 13(5)2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32155957

ABSTRACT

Different microstructures were created on the surface of a polycrystalline diamond plate (obtained by microwave plasma-enhanced chemical vapor deposition-MW PECVD process) by use of a nanosecond pulsed DPSS (diode pumped solid state) laser with a 355 nm wavelength and a galvanometer scanning system. Different average powers (5 to 11 W), scanning speeds (50 to 400 mm/s) and scan line spacings ("hatch spacing") (5 to 20 µm) were applied. The microstructures were then examined using scanning electron microscopy, confocal microscopy and Raman spectroscopy techniques. Microstructures exhibiting excellent geometry were obtained. The precise geometries of the microstructures, exhibiting good perpendicularity, deep channels and smooth surfaces show that the laser microprocessing can be applied in manufacturing diamond microfluidic devices. Raman spectra show small differences depending on the process parameters used. In some cases, the diamond band (at 1332 cm-1) after laser modification of material is only slightly wider and shifted, but with no additional peaks, indicating that the diamond is almost not changed after laser interaction. Some parameters did show that the modification of material had occurred and additional peaks in Raman spectra (typical for low-quality chemical vapor deposition CVD diamond) appeared, indicating the growing disorder of material or manufacturing of the new carbon phase.

7.
Phys Med ; 69: 134-146, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31901838

ABSTRACT

PURPOSE: Advanced 3D dosimetry is required for verifications of complex dose distributions in modern radiotherapy. Two 3D polymer gel dosimeters, coupled with magnetic resonance (MR) imaging (3 T MRI) readout and data processing with polyGeVero® software, were tested for the verification of calculated 3D dose distributions by a treatment planning system (TPS) and ArcCHECK®-3DVH®, related to eradication of a lung tumour. METHODS: N-vinylpyrrolidone-containing 3D polymer gel dosimeters were used: VIC (containing ascorbic acid and copper sulfate pentahydrate) and VIC-T (containing tetrakis(hydroxymethyl)phosphonium chloride). Three remote centers were involved in the dosimeters preparation and irradiation (Poland), and MRI (Austria). Cross beam calibration of the dosimeters and verification of a 3D dose distribution calculated with an Eclipse External Beam TPS and ArcCHECK®-3DVH® were performed. The 3D-to-3D comparisons of the VIC and VIC-T with TPS and ArcCHECK®-3DVH® along with ArcCHECK®-3DVH® versus TPS dose matrixes were performed with the aid of the polyGeVero® by analyzing dose profiles, isodoses lines, gamma index, gamma angle, dose difference, and related histograms. RESULTS: The measured MR-relaxation rate (R2 = 1/T2) for the dosimeters relates to the dose, as follows: R2 = 0.0928 ± 0.0008 [Gy-1 s-1] × D [Gy] + 2.985 ± 0.012 [s-1] (VIC) and 0.1839 ± 0.0044 [Gy-1 s-1] × D [Gy] + 2.519 ± 0.053 [s-1] (VIC-T). The 3D-to-3D comparisons revealed a good agreement between the measured and calculated 3D dose distributions. CONCLUSIONS: VIC and VIC-T with 3T MRI readout and polyGeVero® showed potential for verifications of calculated irradiation plans. The results obtained suggest the implementation of the irradiation plan for eradication of the lung tumour.


Subject(s)
Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Magnetic Resonance Imaging , Pyrrolidinones , Radiometry/instrumentation , Radiotherapy/methods , Calibration , Gelatin/chemistry , Humans , Imaging, Three-Dimensional , Polymers , Radiometry/methods , Software
8.
Phys Med Biol ; 64(17): 175017, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31272088

ABSTRACT

This work reports results related to the manufacturing and optimisation of a leuco crystal violet (LCV)-Pluronic F-127 radiochromic gel dosimeter suitable for 3D radiotherapy dosimetry. A feature of this gel is that the natural gelatine polymer, which is most often used as a matrix in 3D dosimeters, is substituted with Pluronic F-127 synthetic copolymer (poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide). Pluronic F-127 ensures a higher transparency than gelatine, which may be beneficial for optical computed tomography readout, and improves the thermal properties in the temperature range above ~30 °C at which the gelatine physical gel converts to a solution. The optimal composition obtained comprises 2 mM LCV, 4 mM 4-(1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol (Triton X-100), 17 mM trichloroacetic acid (TCAA) and 25% Pluronic F-127. Its main dose-response features are 4‒150 Gy linear dose range (150 Gy was the maximal dose applied to gels in this work), 0.0070 Gy-1 cm-1 dose sensitivity (derived from absorbance (600 nm) = f (dose) for 6 MeV electrons, 0.88(3) Gy s-1 and 0.0156 Gy-1 cm-1 derived from optical density (Δµ) = f (dose) for 6 MV x-rays, 0.1010 Gy s-1), low initial colour (initial absorbance = 0.0429) and a diffusion coefficient of crystal violet (CV) in LCV-Pluronic of 0.054 ± 0.023 mm2 h-1. Raman spectroscopy was used to characterize LCV-Pluronic chemical changes after irradiation. Differential scanning calorimetry (DSC) revealed that LCV-Pluronic is stable in temperatures between approximately 11 °C and 56 °C. Irradiation of LCV-Pluronic gel impacts on its first sol-gel transition temperature and the thermal effect of this process-both increased with absorbed dose, which might be related to the degradation of Pluronic. LCV-Pluronic is a promising 3D dosimeter for ionising radiation applications. Further work is needed to improve LCV-Pluronic response in the low dose region, and characterize potential effects of pH, temperature during irradiation, and radiation quality/dose rate on dose response characteristics.


Subject(s)
Film Dosimetry/instrumentation , Gelatin/chemistry , Polyethylene Glycols/chemistry , Propylene Glycols/chemistry , Radiation Dosimeters/standards , Electrons , Film Dosimetry/methods , Gentian Violet/chemistry , Octoxynol/chemistry , Tomography, Optical
9.
Phys Med Biol ; 64(3): 035019, 2019 01 31.
Article in English | MEDLINE | ID: mdl-30577036

ABSTRACT

This work reports on the impact of tetrakis(hydroxymethyl)phosphonium chloride (THPC) on the properties of a VIC gel dosimeter (VIC is an abbreviated acronym of VIPARCT). THPC was used as a substitute oxygen scavenger in VIC (17% N-vinylpyrrolidone, 8% N,N'-methylenebisacrylamide, 12% tert-butyl alcohol, 7.5% gelatine, 0.02% hydroquinone and an oxygen scavenger of 0.007% ascorbic acid and 0.0008% CuSO4 × 5H2O). THPC reduced the gelation time of VIC from hours to minutes. The best composition (VIC-T) contained 14 mM THPC and a reduced gelatine concentration (5%) with respect to VIC, which allowed for gelation in about 3 min. VIC-T was characterised by the same dose sensitivity (0.176 ± 0.003 Gy-1 s-1 for VIC-T and 0.171 ± 0.002 Gy-1 s-1 for VIC), dose threshold (0.5 Gy) and dynamic dose range (0.5‒50 Gy) as VIC, and a lower linear dose range (20 Gy for VIC-T, 30 Gy for VIC) (0.47 T NMR measurements). VIC-T was stable for at least 10 days after irradiation, and 3D dose distribution was stable for over 4 months after irradiation. The dose response of VIC-T was independent of the radiation dose rate, type and energy of radiation for 6 and 15 MV photons and 12 MeV electrons. This is an improvement with respect to VIC which showed a different dose response for 6 MV photons than for 12 MeV electrons and 15 MV photons. Raman spectroscopy showed similarity in the rate of radiation-induced conversion of monomers in VIC and VIC-T, indicating interaction of THPC with gelatine in VIC-T, and showed ageing of gelatine in both dosimeters. Differential scanning calorimetry showed VIC-T stability at 0 °C-80 °C (VIC: 0 °C‒29.5 °C). The chemical polymerisation and crosslinking of gelatine with THPC is reported, the mechanism of which was analysed in detail. A comparison of N-vinylpyrrolidone-containing dosimeters is presented in this work.


Subject(s)
Organophosphorus Compounds/chemistry , Oxygen/chemistry , Polymers/chemistry , Radiometry/instrumentation , Electrons , Gels , Photons
10.
Phys Med Biol ; 63(17): 175010, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30102250

ABSTRACT

This work discusses the substitution of a gelatine physical gel matrix with a matrix made of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (Pluronic F-127) in five 3D radiotherapy polymer gel dosimeters: MAGAT, PAGAT, NIPAM, VIPARnd (VIP) and VIPARCT (VIC). The current research outcomes showed that not each polymer gel dosimeter could be manufactured with Pluronic F-127. Two of the polymer gel dosimeters (PAGAT and VIP) containing the Pluronic F-127 matrix allowed for some proper dose response for radiotherapy dosimetry (a response to a dose range of e.g. 0‒50 Gy). The new best performing Pluronic-based polymer gel dosimeters were characterised by improved nuclear magnetic resonance properties, when being compared to gels with gelatine matrix at the same monomer content. These are: (i) a ~33% higher dose sensitivity; (ii) a comparable or slightly higher linear and dynamic dose range and (iii) a lower (new VIP composition, VIP3) or equivocal (new PAGAT composition, PAGAT2-Pluronic) dose threshold. However, there might be optimised gelatine based polymer dosimeters demonstrating even better sensitivity. UV-vis spectrophotometry measurements revealed that Pluronic matrices ensure six-times lower (VIP3-Pluronic) and eight-times lower (PAGAT2-Pluronic) absorbance (at 400 nm) of non-irradiated gels compared to gelatine matrices, which makes the new polymer gel dosimeters optically improved in comparison to their corresponding gelatine-based compositions. The differences in absorption reduce for higher wavelengths. Differential scanning calorimetry measurements revealed the following temperature stability ranges for the gels: (i) VIP with gelatine matrix: 0 °C‒26 °C, (ii) VIP3 with Pluronic matrix: 13.8 °C-55.2 °C, (iii) PAGAT2 with gelatine matrix: 0 °C-80 °C and (iv) PAGAT2 with Pluronic matrix: 21.4 °C-55.2 °C. In conclusion, Pluronic F-127 is an attractive co-polymer to serve as a substitute for the gelatine matrix in some 3D polymer gel dosimeters.


Subject(s)
Gelatin/chemistry , Gels/chemistry , Magnetic Resonance Spectroscopy/methods , Phantoms, Imaging , Poloxamer/chemistry , Radiation Dosimeters , Radiometry/instrumentation , Humans , Polymers/chemistry , Temperature
11.
Phys Med Biol ; 62(3): 986-1008, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28081000

ABSTRACT

This work presents an improvement of the VIPARnd ('nd' stands for 'normoxic, double', or VIP) polymer gel dosimeter. The gel composition was altered by increasing the concentration of the monomeric components, N-vinylpyrrolidone (NVP) and N,N'-methylenebisacrylamide (MBA), in co-solvent solutions. The optimal composition (VIPARCT, where 'CT' stands for computed tomography, or VIC) comprised: 17% NVP, 8% MBA, 12% t-BuOH, 7.5% gelatine, 0.007% ascorbic acid, 0.0008% CuSO4 × 5H2O and 0.02% hydroquinone. The following characteristics of VIC were achieved: (i) linear dose range of 0.9_30 Gy, (ii) saturation for radiation doses of over 50 Gy, (iii) threshold dose of about 0.5 Gy, (iv) dose sensitivity of 0.171 Gy-1 s-1, which is roughly 2.2 times higher than that of VIP (for nuclear magnetic resonance measurements). It was also found that VIC is dose- rate-independent, and its dose response does not alter if the radiation source is changed from electrons to photons for external beam radiotherapy. The gel responded similarly to irradiation with small changes in radiation energy but was sensitive to larger energy changes. The VIC gel retained temporal stability from 20 h until at least 10 d after irradiation, whereas spatial stability was retained from 20 h until at least 6 d after irradiation. The scheme adopted for VIC manufacturing yields repeatable gels in terms of radiation dose response. The VIC was also shown to perform better than VIP using x-ray computed tomography as a readout method; the dose sensitivity of VIC (0.397 HU Gy-1) was 1.5 times higher than that of VIP. Also, the dose resolution of VIC was better than that of VIP in the whole dose range examined.


Subject(s)
Gels/radiation effects , Polymers/radiation effects , Radiation Dosimeters , Radiotherapy/instrumentation , Acrylamides/radiation effects , Electrons , Photons , Pyrrolidinones/radiation effects , Radiometry/instrumentation , Radiometry/methods , Radiotherapy/methods , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...