Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
RSC Adv ; 13(19): 12695-12702, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37114023

ABSTRACT

In this study, two-dimensional graphene oxide-based novel membranes were fabricated by modifying the surface of graphene oxide nanosheets with six-armed poly(ethylene glycol) (PEG) at room conditions. The as-modified PEGylated graphene oxide (PGO) membranes with unique layered structures and large interlayer spacing (∼1.12 nm) were utilized for organic solvent nanofiltration applications. The as-prepared 350 nm-thick PGO membrane offers a superior separation (>99%) against evans blue, methylene blue and rhodamine B dyes along with high methanol permeance ∼ 155 ± 10 L m-2 h-1, which is 10-100 times high compared to pristine GO membranes. Additionally, these membranes are stable for up to 20 days in organic solvent. Hence the results suggested that the as-synthesized PGO membranes with superior separation efficiency for dye molecules in organic solvent can be used in future for organic solvent nanofiltration application.

2.
Environ Technol ; 43(12): 1783-1790, 2022 May.
Article in English | MEDLINE | ID: mdl-33180681

ABSTRACT

In this study, one-dimensional zinc (Zn)-doped cadmium sulphide (CdS) nanowires were synthesised by a solvothermal method. The Zn doping concentrations were varied from 1 to 5 mol% (ZnxCd1-xS where x = 0.001, 0.003 and 0.005). As-prepared materials were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy and UV-visible spectroscopy. Electrochemical impedance spectroscopy (EIS) was conducted to measure the charge transfer resistance. The photocatalytic performance of prepared materials was evaluated by the photodegradation of methylene blue (MB) dye. The result showed that 5% Zn-doped CdS is more photoactive as compared to other corresponding doped and undoped CdS. The increase in photocatalytic performance is due to improvement in the charge separation.

3.
Environ Res ; 201: 111588, 2021 10.
Article in English | MEDLINE | ID: mdl-34175289

ABSTRACT

In this study, magnetic sporopollenin supported cyanocalixarene (MSP-CyCalix) nanocomposite was synthesized and introduced as an adsorbent material for the removal of pesticides from aqueous media. MSP-CyCalix was characterized by different analytical techniques FTIR, SEM, EDX, BET, VSMand TEM. Chlorpyrifos and hexaconazole pesticides were chosen as model analytes solutions for testing the adsorption efficiency of MSP-CyCalix adsorbent. The adsorption results showed that the incorporated cyano functional groups significantly increased the chemical reactivity and adsorption capacity for pesticides. To obtain the highest possible performance, experimental parameters such as pH, salt, dosage and time were optimized. Adsorption kinetics and isotherms models showed that pesticide adsorption process was well fitted with the pseudo-second-order and Langmuir models with a maximum adsorption capacity of 13.88 mg g-1 and 12.34 mg g-1 and a removal efficiency of >90% for both pesticides. Lastly, MSP-CyCalix maintained a removal efficiency of >80% for ten cycles and 60% after the eleventh cycles of usage. The results proved that MSP-CyCalix nanocomposite can be used as an efficient adsorbent for the removal of pesticide residues from water.


Subject(s)
Pesticides , Biopolymers , Carotenoids , Kinetics , Magnetic Phenomena , Water
4.
Chem Commun (Camb) ; 55(4): 466-469, 2019 Jan 03.
Article in English | MEDLINE | ID: mdl-30547162

ABSTRACT

The generation of carbamoyl radicals, followed by their addition to heteroarenes, was performed under mild conditions through a metal-free photocatalyzed decarboxylation of oxamic acids. The process has been applied to the carbamoylation of heteroaromatic bases using α-aminoacid-derived oxamic acids, leading to the corresponding amides without racemization.

SELECTION OF CITATIONS
SEARCH DETAIL
...