Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 263: 115350, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37586200

ABSTRACT

Across the globe, the frequent occurrence of drought spells has significantly undermined the sustainability of modern high-input farming systems, particularly those focused on staple crops like wheat. To ameliorate the deleterious impacts of drought through a biologically viable and eco-friendly approach, a study was designed to explore the effect of nicotinic acid on different metabolic, and biochemical processes, growth and yield of wheat under optimal moisture and drought stress (DS). The current study was comprised of different levels of nicotinic acid applied as foliar spray (0 g L-1, 0.7368, 1.477, 2.2159 g L-1) and fertigation (0.4924, 0.9848, and 1.4773 g L-1) under normal conditions and imposed drought by withholding water at anthesis stage. The response variables were morphological traits such as roots and shoots characteristics, yield attributes, grain and biological yields along with biosynthesis of antioxidants. The results revealed that nicotinic acid dose of 2.2159 g L-1 out-performed rest of treatments under both normal and DS. The same treatment resulted in the maximum root growth (length, fresh and dry weights, surface area, diameter) and shoot traits (length, fresh and dry weights) growth. Additionally, foliar applied nicotinic acid (2.2159 g L-1) also produced as the highest spike length, grains spike-1, spikelet's spike-1 and weight of 1000 grains. Moreover, these better yield attributes led to significantly higher grain yield and biological productivity of wheat. Likewise in terms of physiological growth of wheat under DS, the same treatment remained superior by recording the highest SPAD value, relative water content, water potential of leaves, leaf area, stomatal conductance (292 mmolm-2S-1), internal carbon dioxide concentration, photosynthesis and transpiration rate. Interestingly, exogenously applied nicotinic acid remained effective in triggering the antioxidant system of wheat by recording significantly higher catalase, peroxidase, superoxide dismutase and ascorbate peroxidase.


Subject(s)
Antioxidants , Niacin , Antioxidants/metabolism , Triticum/metabolism , Droughts , Water/metabolism , Edible Grain/metabolism , Defense Mechanisms
2.
Plant Physiol Biochem ; 152: 90-99, 2020 May 03.
Article in English | MEDLINE | ID: mdl-32408178

ABSTRACT

Rapid industrialization is the main reason of heavy metals contamination of soil colloids and water reservoirs. Heavy metals are persistent inorganic pollutants; deleterious to plants, animals and human beings because of accumulation in food chain. The aim of the current work was to evaluate the role of indole acetic acid (IAA), exopolysaccharide (EPS) and ACC-deaminase producing plant growth promoting rhizobacteria (PGPR) i.e .B. gibsonii PM11 and B. xiamenensis PM14 in metal phytoremediation of metals, their survival and plant growth promotion potential in metal polluted environment as well as alterations in physio-biochemical responses of inoculated L. usitatissimum plants towards heavy metal toxicity. Two bacterial strains Bacillus gibsonii (PM11) and Bacillus xiamenensis (PM14), previously isolated from sugarcane's rhizosphere, were screened for metal tolerance (50 mg/l to 1000 mg/l) and plant growth promoting traits like IAA, ACC-deaminase, EPS production and nitrogen fixing ability under metal stress. The response of flax plant (Linum usitatissimum L.) was analyzed in a pot experiment containing both industrially contaminated and non-contaminated soils. Experiment was comprised of six different treatments, each with three replicates. At the end of the experiment, role of metal tolerant plant growth promoting bacterial inoculation was elucidated by analyzing the plant growth parameters, chlorophyll contents, antioxidative enzymes, and metal uptake both under standard and metal contaminated rhizospheres. Results revealed that root and shoot length, plant's fresh and dry weight, proline content, chlorophyll content, antioxidant enzymatic activity was increased in plants inoculated with plant growth promoting bacteria as compared to non-inoculated ones both in non-contaminated and industrial contaminated soils. In current study, inoculation of IAA, EPS and ACC-deaminase producing bacteria enhances plant growth and nutrient availability by minimizing metal-induced stressed conditions. Moreover, elevated phytoextraction of multi-metals from industrial contaminated soils by PGPR inoculated L. usitatissimum plants reveal that these strains could be used as sweepers in heavy metals polluted environment.

SELECTION OF CITATIONS
SEARCH DETAIL
...