Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Dairy Sci ; 102(4): 3175-3188, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30738671

ABSTRACT

Realized deviations from the expected Mendelian inheritance of alleles from heterozygous parents have been previously reported in a broad range of organisms (i.e., transmission ratio distortion; TRD). Various biological mechanisms affecting gametes, embryos, fetuses, or even postnatal offspring can produce patterns of TRD. However, knowledge about its prevalence and potential causes in livestock species is still scarce. Specific Bayesian models have been recently developed for the analyses of TRD for biallelic loci, which accommodated a wide range of population structures, enabling TRD investigation in livestock populations. The parameterization of these models is flexible and allows the study of overall (parent-unspecific) TRD and sire- and dam-specific TRD. This research aimed at deriving Bayesian models for fitting TRD on the basis of haplotypes, testing the models for both haplotype- and SNP-based methods in simulated data and actual Holstein genotypes, and developing a specific software for TRD analyses. Results obtained on simulated data sets showed that the statistical power of the analysis increased with sample size of trios (n), proportion of heterozygous parents, and the magnitude of the TRD. On the other hand, the statistical power to detect TRD decreased with the number of alleles at each loci. Bayesian analyses showed a strong Pearson correlation coefficient (≥0.97) between simulated and estimated TRD that reached the significance level of Bayes factor ≥10 for both single-marker and haplotype analyses when n ≥ 25. Moreover, the accuracy in terms of the mean absolute error decreased with the increase of the sample size and increased with the number of alleles at each loci. Using real data (55,732 genotypes of Holstein trios), SNP- and haplotype-based distortions were detected with overall TRD, sire-TRD, or dam-TRD, showing different magnitudes of TRD and statistical relevance. Additionally, the haplotype-based method showed more ability to capture TRD compared with individual SNP. To discard possible random TRD in real data, an approximate empirical null distribution of TRD was developed. The program TRDscan v.1.0 was written in Fortran 2008 language and provides a powerful statistical tool to scan for TRD regions across the whole genome. This developed program is freely available at http://www.casellas.info/files/TRDscan.zip.


Subject(s)
Livestock/genetics , Polymorphism, Single Nucleotide , Alleles , Animals , Bayes Theorem , Female , Genotype , Haplotypes , Heterozygote , Inheritance Patterns , Male , Software
2.
Reprod Fertil Dev ; 32(2): 50-55, 2019 Jan.
Article in English | MEDLINE | ID: mdl-32188557

ABSTRACT

The Canadian dairy industry has been using invivo and invitro assisted reproductive technologies to produce embryos. Technological improvements have helped increase the number and quality of embryos produced, but genetic and genomic tools for improving these traits have yet to be assessed for the Canadian Holstein population. Genetic parameters and a genome-wide association study were performed in Canadian Holstein for the total number of embryos (NE) and the number of viable embryos (VE). Results showed potential for genetic selection for both NE and VE, with heritability estimates (± s.e.) of approximately 0.15±0.01. Genetic correlations between the number of embryos produced using different procedures (invivo and invitro) suggested that a similar number of embryos should be expected from a donor regardless of the procedure used. A region on chromosome 11 of the bovine genome was found to be significantly associated with the number of embryos, indicating a potential regulatory role of this region on embryo production. Overall, these findings are of interest for the Canadian dairy industry because they provide useful information for breeders that are interested in producing embryos from the elite donors in their herds or in the population using assisted reproductive technologies.


Subject(s)
Breeding/methods , Cattle/embryology , Dairying/methods , Embryo, Mammalian/cytology , Genetic Techniques/veterinary , Reproductive Techniques, Assisted/veterinary , Animals , Cattle/genetics , Cloning, Organism/methods , Cloning, Organism/veterinary , Dairying/trends , Embryo, Mammalian/physiology , Female , Genome-Wide Association Study/veterinary , Genomics/methods , Genomics/trends , Selection, Genetic
3.
J Dairy Sci ; 101(8): 7248-7257, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29753485

ABSTRACT

Superovulation or ovum pick-up and in vitro fertilization are technologies used to produce an increased number of embryos from elite females. Embryo production traits have been shown to be heritable, but the genes that cause this variability have not yet been assessed. The main objectives of this study were to perform a genome-wide association study (GWAS) to find single nucleotide polymorphisms (SNP) associated with embryo production traits and to identify candidate genes affecting the number of embryos produced by Holstein donors in Canada that may provide insight into the regulation of embryo production. Breeding values were estimated and de-regressed for all donors and sires using a data set of 150,971 records of superovulation or ovum pick-up and in vitro fertilization. A total of 11,607 animals were genotyped, but of that number only 5,118 were genotyped with at least a 50K SNP panel and had a de-regressed estimated breeding value reliability of at least 10%. For the GWAS, 606,406 imputed SNP on 29 autosomal chromosomes were considered after applying quality control measures. A single-SNP univariate mixed linear animal model was used to perform the GWAS, and a 5% false discovery rate was applied to adjust for multiple testing. We found 36 and 14 significant SNP associated with the total number of embryos and the number of viable embryos, respectively, with most of them located on chromosome 11. Using these significant SNP, positional genes located within 10,000 bp upstream and downstream of the SNP were retrieved. Thirteen genes were harboring or near the significant SNP for the total number of embryos, 4 of them also being near the significant SNP for viable embryos. Some of these genes (CRB2, DENND1A, MAD1L1, NDUFA8, PTGS1) could be considered as potential positional candidate genes related to the number of embryos produced by a donor. This list will need to be validated in an independent population to confirm the role of the genes for embryo production.


Subject(s)
Cattle/embryology , Cattle/genetics , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Superovulation/physiology , Animals , Breeding , Canada , Female , Reproducibility of Results
4.
J Dairy Sci ; 100(9): 7320-7329, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28711250

ABSTRACT

The number of embryos produced by Holstein donors has been shown to be heritable, so it could be possible to genetically select for this trait to improve the efficiency of the assisted reproductive technology (ART) in dairy cattle. Another important parameter to consider for achieving good results from ART is embryo quality because embryos of good quality have more chance of producing live offspring. The possibility of using genetic selection for increasing the quality of embryo produced from ART has yet to be assessed. The objective of this study was, therefore, to perform a genetic analysis of embryo quality of Holstein donors in Canada using data recorded by Holstein Canada. The data set used was missing quality score data for embryos transferred fresh into a recipient, so the analyses were only performed for frozen embryos. With most traits in the Canadian dairy industry being evaluated with linear models, embryo quality was also evaluated with this class of models. However, considering the categorical nature of embryo quality, a threshold model was also evaluated. Embryo quality data were analyzed with either a univariate linear animal model or a univariate binomial threshold animal model. Genetic parameters estimated from the different models were comparable. A low heritability was found for the donor (0.04 ± <0.01) and the service sire (0.02 ± <0.01), but the repeatability estimate for the donor was higher (0.17), indicating that it was worthwhile to use a repeated records model. Overall, considering the low genetic parameters estimated, slow genetic progress is expected for the quality of frozen embryos produced by Canadian Holstein donors. Rank correlations were calculated between breeding values estimated from different models. High correlations were found between all models, indicating that no substantial re-ranking of the animals is expected from the different models. So, even though a threshold model is better suited for the analysis of categorical data, a linear model could be used for the analysis of embryo quality because it is less computationally demanding.


Subject(s)
Breeding , Genetic Testing/veterinary , Reproductive Techniques, Assisted/veterinary , Animals , Canada , Cattle , Phenotype , Selection, Genetic
5.
J Dairy Sci ; 99(10): 8222-8226, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27522410

ABSTRACT

Multiple embryos can be produced from a heifer or cow donors using an in vivo or an in vitro technique. Comparisons of the number of embryos produced by the same donors as heifers and cows and using different techniques are limited. The main objectives of this study were to assess the genetic correlation between the number of embryos produced by Holstein donors using an in vivo and in vitro technique as a heifer and as a cow. The data set used was recorded by Holstein Canada and included all successful superovulations or ovum pickup and in vitro fertilization procedures performed on Holstein donors for more than 20yr. The type of technique used was known for all records and the status of the donor at recovery was retrieved from calving records. Bivariate repeatability animal model analyses were performed for both the total number of embryos (NE) and the number of viable embryos (VE) recovered per procedure. Logarithmic transformation was performed on the traits to normalize the data. Heritability estimates for the donor varied between 0.14 (0.02) and 0.19 (0.03) over all analyses, indicating that the number of embryos produced by a donor is influenced by the genetic potential of the donor. Genetic correlations between records produced in vivo and in vitro were moderately high and positive (NE=0.85±0.07; VE=0.63±0.09), suggesting that donors with high genetic potential for in vivo superovulation tend also to have high potential to produce multiple embryos in vitro. Similarly, the moderately high genetic correlations (NE=0.79±0.05; VE=0.72±0.05) found between heifer and cow records indicate that a donor tends to produce a comparable number of embryos as a heifer or as a cow. The estimated repeatabilities (0.23 to 0.35) indicated that the number of embryos recovered should be somewhat repeatable in the same donor over time. On the other hand, the service sires seem not to play an important role on the total number of embryos produced by a donor no matter the technique used or the status of the donor at recovery.


Subject(s)
Fertilization in Vitro/veterinary , In Vitro Techniques , Animals , Canada , Cattle , Female , Superovulation
6.
J Dairy Sci ; 99(5): 3612-3623, 2016 May.
Article in English | MEDLINE | ID: mdl-26923051

ABSTRACT

Superovulation of dairy cattle is frequently used in Canada. The cost of this protocol is high, and so is the variability of the outcome. Knowing the superovulatory potential of a donor cow could influence the breeder's decision to superovulate it or not. The main objective of this study was to perform a genetic analysis for superovulatory response of Holstein cows in Canada using data recorded by Holstein Canada, and to investigate if these data could be used for genetic evaluation. Data contained the total number of embryos and the number of viable embryos from every successful flushing performed across Canada. After editing, 137,446 records of superovulation performed between 1992 and 2014 were analyzed. A univariate repeatability animal model analysis was performed for both total number of embryos and number of viable embryos. Because both data and residuals did not follow a normal distribution, records were subject to either logarithmic or Anscombe transformation. Using logarithmic transformation, heritability estimates (SE) of 0.15 (0.01) and 0.14 (0.01) were found for total number of embryos and number of viable embryos, respectively. Using Anscombe transformation, heritability estimates (SE) of 0.17 (0.01) and 0.14 (0.01) were found for total number of embryos and number of viable embryos, respectively. The genetic correlation between the 2 traits was estimated at 0.97 using logarithmic transformation and 0.95 using Anscombe transformation. Breeding values were estimated for 54,463 cows, and 3,513 sires. Only estimated breeding values of sires having a reliability higher than 40% were considered for estimated breeding values correlations with other routinely evaluated traits. The results showed that selection for a higher response to superovulation would lead to a slight decrease in milk production, but an improvement for functional traits, including all reproduction traits. In all cases, the estimated correlations are either low or modest. We conclude that genetic selection for increased superovulatory response in donors is possible; daughters of sires with high estimated breeding values for superovulatory response will tend to yield more embryos, whereas the additive effect of service sire seems not to contribute to the variability of the 2 superovulation traits and was not significantly correlated with the additive effect of the donor.


Subject(s)
Breeding , Superovulation , Animals , Cattle , Female , Genetic Testing , Lactation/genetics , Phenotype , Reproducibility of Results
7.
Rev Med Suisse ; 8(324): 92-5, 2012 Jan 18.
Article in French | MEDLINE | ID: mdl-23185816

ABSTRACT

Because of the lack of screening methods, ovarian cancer remains one of the major causes of mortality in gynecological oncology. Prevention by salpingectomy, based on a concept about the origin of serous carcinoma, may be proven effective in the future. Regarding cervical cancer, screening methods are improving and the benefit of HPV-HR testing has been recently demonstrated. Metabolic requirements and exercise are modified during pregnancy. Present recommendations are for pregnant women to practice regular moderate exercise, as in a non-pregnant population. This guideline, despite being reasonable, is not based on strong evidence. A randomised trial is ongoing in our Department to evaluate the effects of exercise in women with gestational diabetes.


Subject(s)
Gynecology/trends , Obstetrics/trends , Ovarian Neoplasms/prevention & control , Papillomavirus Infections/prevention & control , Pregnancy Complications, Infectious/prevention & control , Uterine Cervical Neoplasms/prevention & control , Body Mass Index , Evidence-Based Medicine , Female , Humans , Life Style , Mass Screening/trends , Obesity/complications , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/surgery , Papillomaviridae/isolation & purification , Papillomavirus Infections/complications , Papillomavirus Infections/diagnosis , Practice Guidelines as Topic , Pregnancy , Pregnancy Complications, Infectious/diagnosis , Pregnancy Complications, Infectious/virology , Prenatal Care , Risk Factors , Salpingectomy , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/surgery , Uterine Cervical Neoplasms/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...