Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Opt Express ; 30(4): 4886-4894, 2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35209461

ABSTRACT

Linear polarization rotators have been widely used in optical systems. Commonly used polarization rotators are still beset by strong dispersion and thus restricted spectral bandwidth of operation. This leads to the development of achromatic or broadband alternatives, but most of them incorporate multiple waveplates for retardation compensation, which comes at the cost of increased complexity and reduced flexibility in operation and system design. Here, we demonstrate a single-element achromatic polarization rotator based on a thin film of dual-frequency chiral liquid crystal. The angle of polarization rotation is electrically tunable from 0° to 180° with low dispersion (±3°) in the entire visible spectrum, and a high degree of linear polarization (>95%) at the output.

2.
Polymers (Basel) ; 12(12)2020 Dec 12.
Article in English | MEDLINE | ID: mdl-33322682

ABSTRACT

A superhydrophobic surface that has controllable adhesion and is characterized by the lotus and petal effects is a powerful tool for the manipulation of liquid droplets. Such a surface has considerable potential in many domains, such as biomedicine, enhanced Raman scattering, and smart surfaces. There have been many attempts to fabricate superhydrophobic films; however, most of the fabricated films had uniform adhesion over their area. A patterned superhydrophobic surface with spatially controllable adhesion allows for increased functions in the context of droplet manipulation. In this study, we proposed a method based on liquid-crystal/polymer phase separation and local photopolymerization to realize a superhydrophobic surface with spatially varying adhesion. Materials and topographic structures were analyzed to understand their adhesion mechanisms. Two patterned surfaces with varying adhesion were fabricated from a superhydrophobic material to function as droplet guides and droplet collectors. Due to their easy fabrication and high functionality, superhydrophobic surfaces have high potential for being used in the fabrication of smart liquid-droplet-controlling surfaces for practical applications.

3.
Nat Mater ; 19(1): 94-101, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31659291

ABSTRACT

Natural self-assembled three-dimensional photonic crystals such as blue-phase liquid crystals typically assume cubic lattice structures. Nonetheless, blue-phase liquid crystals with distinct crystal symmetries and thus band structures will be advantageous for optical applications. Here we use repetitive electrical pulses to reconfigure blue-phase liquid crystals into stable orthorhombic and tetragonal lattices. This approach, termed repetitively applied field, allows the system to relax between each pulse, gradually transforming the initial cubic lattice into various intermediate metastable states until a stable non-cubic crystal is achieved. We show that this technique is suitable for engineering non-cubic lattices with tailored photonic bandgaps, associated dispersion and band structure across the entire visible spectrum in blue-phase liquid crystals with distinct composition and initial crystal orientation. These field-free blue-phase liquid crystals exhibit large electro-optic responses and can be polymer-stabilized to have a wide operating temperature range and submillisecond response speed, which are promising properties for information display, electro-optics, nonlinear optics, microlasers and biosensing applications.

4.
Opt Express ; 27(8): 10580-10585, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-31052914

ABSTRACT

We propose an optically rewritable dynamic phase grating based on polymer-templated azo liquid crystal in a blue-phase structure. The grating consists of alternating blue-phase and light-induced isotropic-phase regions, patterned by ultraviolet illumination. In the field-off state, the grating is hidden (showing no diffraction), due to index matching between the two phases. An index change is induced in the blue-phase regions when an external voltage is applied, while the refractive index of the isotropic-phase regions remains the same. The resulting periodic index modulation causes the grating to diffract light. The diffraction efficiency is independent of incident polarization, and the electro-optic response is in the sub-millisecond scale. Enabled by the reversible photoisomerism of the azobenzene, we demonstrate optical-patterning, -erasure, and re-patterning of a single liquid-crystal cell into different grating geometries.

5.
Opt Express ; 27(8): 10806-10812, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-31052933

ABSTRACT

Two photoalignment-based methods to achieve orientational control of optical diffractions by cholesteric liquid crystal (CLC) fingerprint gratings are proposed and demonstrated. A trace of methyl red in the CLC host can effectively induce surface alignment upon linearly polarized green exposure and enable optically rewritable alignment. An effective rotation of the photo-aligned CLC grating is attained by changing the surface alignment axis. Using axially symmetric photoalignment, electrically tunable radial and concentric gratings are also realized. 1D grating diffraction is produced by operating off-axis and can be rotated by mechanically moving the axially symmetric grating. Such optical gratings have great potential for practical use in vibration detection, multi-directional optical modulations, and beam steering.

6.
Opt Express ; 26(13): 17009-17014, 2018 Jun 25.
Article in English | MEDLINE | ID: mdl-30119517

ABSTRACT

This work demonstrates a variable optical attenuator (VOA) using dynamic scattering mode (DSM) in ion-doped liquid crystals with negative dielectric anisotropy. The mechanism of attenuation comes from optical scattering, which is generated by the electrically induced instability of undulation of LC textures. Electric fields are applied to switch the initial transparent state of the designed VOA to scattering states, varying the transmittance. The electric field also changes the size of the scattering domain from the LC texture and causes the designed device to exhibit an ultra-broadband selective operation in a visible to mid-IR spectral range. Furthermore, the VOA can selectively block one visible or mid-IR wavelength of light while letting other light pass. Such a VOA has many superior optical switching properties, such as high on/off contrast, insensitivity to polarization, and spectral selectivity; therefore, it has the potential to be used in practical optical systems.

7.
Opt Express ; 26(2): 781-789, 2018 Jan 22.
Article in English | MEDLINE | ID: mdl-29401958

ABSTRACT

We report the design, fabrication, and characterization of an optically switchable polarizing beam splitter with a prism/azobenzene liquid crystal/prism hybrid structure. The beam splitter can operate in the polarization-splitting mode and the non-splitting mode. The switching between the modes is realized by the photoisomerization-induced phase transitions in the azobenzene liquid crystal, featuring all-optical control, bistability, and fast response. Such an active polarization-handling element is highly desirable as it not only simplifies and compacts sophisticated optical systems but also increases the degree of freedom in optical circuit design.

8.
Nat Commun ; 8(1): 727, 2017 09 28.
Article in English | MEDLINE | ID: mdl-28959009

ABSTRACT

Although there have been intense efforts to fabricate large three-dimensional photonic crystals in order to realize their full potential, the technologies developed so far are still beset with various material processing and cost issues. Conventional top-down fabrications are costly and time-consuming, whereas natural self-assembly and bottom-up fabrications often result in high defect density and limited dimensions. Here we report the fabrication of extraordinarily large monocrystalline photonic crystals by controlling the self-assembly processes which occur in unique phases of liquid crystals that exhibit three-dimensional photonic-crystalline properties called liquid-crystal blue phases. In particular, we have developed a gradient-temperature technique that enables three-dimensional photonic crystals to grow to lateral dimensions of ~1 cm (~30,000 of unit cells) and thickness of ~100 µm (~ 300 unit cells). These giant single crystals exhibit extraordinarily sharp photonic bandgaps with high reflectivity, long-range periodicity in all dimensions and well-defined lattice orientation.Conventional fabrication approaches for large-size three-dimensional photonic crystals are problematic. By properly controlling the self-assembly processes, the authors report the fabrication of monocrystalline blue phase liquid crystals that exhibit three-dimensional photonic-crystalline properties.

9.
Opt Express ; 25(14): 16123-16129, 2017 Jul 10.
Article in English | MEDLINE | ID: mdl-28789120

ABSTRACT

This work proposes a mid-infrared polarization rotator that incorporates a twisted nematic liquid crystal (TNLC) cell with a photo-controllable alignment layer. The TNLC device with a sufficient phase retardation can act as an achromic polarization rotation device over a wide wavelengths range and thus can rotate the polarization of a mid-IR laser beam. The photo-alignment technique enables TNLCs with arbitrary twisting angles to be generated by the use of visible polarized addressing light to control the directors of the photo-alignment layer. Therefore, arbitrary rotation angles of the polarization axis of a linearly polarized mid-IR laser beam can be realized. Moreover, the rewritable property and reliability of this polarization rotator are experimentally verified. The flexibility of polarization control for broadband mid-IR opens up a large range of potential mid-IR applications.

10.
Opt Express ; 24(20): 22892-22898, 2016 Oct 03.
Article in English | MEDLINE | ID: mdl-27828356

ABSTRACT

This work proposes a tunable reflective guided-mode resonant (GMR) filter that incorporates a 90° twisted nematic liquid crystal (TNLC). The GMR grating acts as an optical resonator that reflects strongly at the resonance wavelength and as an alignment layer for LC. The 90° TNLC functions as an achromic polarization rotator that alters the polarization of incident light. The resonance wavelength and reflectance of such a filter can be controlled by setting the angle of incidence and driving the 90° TNLC, respectively. The designed filter exhibits a very large spectral shift in resonance wavelength from 710 to 430 nm, which covers the entire visible spectrum. The transmittance can be tuned to within 10 V at various resonance wavelengths. The hybrid GMR - LC filter is compact, has a simple design, and is easy to fabricated. It can therefore be used in practical applications.

11.
Sci Rep ; 6: 30873, 2016 08 05.
Article in English | MEDLINE | ID: mdl-27491391

ABSTRACT

In this paper, we show that anisotropic photosensitive nematic liquid crystals (PNLC) made by incorporating anisotropic absorbing dyes are promising candidates for constructing all-optical elements by virtue of the extraordinarily large optical nonlinearity of the nematic host. In particular, we have demonstrated several room-temperature 'prototype' PNLC-based all-optical devices such as optical diode, optical transistor and all primary logic gate operations (OR, AND, NOT) based on such optical transistor. Owing to the anisotropic absorption property and the optical activity of the twist alignment nematic cell, spatially non-reciprocal transmission response can be obtained within a sizeable optical isolation region of ~210 mW. Exploiting the same mechanisms, a tri-terminal configuration as an all-optical analogue of a bipolar junction transistor is fabricated. Its ability to be switched by an optical field enables us to realize an all-optical transistor and demonstrate cascadability, signal fan-out, logic restoration, and various logical gate operations such as OR, AND and NOT. Due to the possibility of synthesizing anisotropic dyes and wide ranging choice of liquid crystals nonlinear optical mechanisms, these all-optical operations can be optimized to have much lower thresholds and faster response speeds. The demonstrated capabilities of these devices have shown great potential in all-optical control system and photonic integrated circuits.

12.
Opt Express ; 24(2): 1002-7, 2016 Jan 25.
Article in English | MEDLINE | ID: mdl-26832482

ABSTRACT

This work develops a sensitivity-enhanced optical temperature sensor that is based on a silicon nitride (SiN) micro-ring resonator that incorporates nematic liquid crystal (NLC) cladding. As the ambient temperature changes, the refractive index of the NLCs, which have a large thermal-optical coefficient, dramatically varies. The change in the refractive index of the NLC cladding that is caused by the temperature shift can alter the effective refractive index of the micro-ring resonator and make the resonance wavelength very sensitive to the ambient temperature. The temperature-sensitivity of the device with 5CB cladding for TM-polarized light was measured to be as high as 1nm/°C between 25 and 33 °C and over 2nm/°C at temperatures close to clearing temperature of the 5CB cladding. The temperature-sensitivity of the proposed device is at least 55 times that of the micro-ring resonator with air cladding, whose temperature-dependent wavelength shift for TM-polarized light is 18pm/ °C.

13.
Appl Opt ; 53(22): E33-7, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-25090351

ABSTRACT

An electrically activated bistable light shutter that exploits polymer-stabilized cholesteric liquid crystal film was developed. Under double-sided three-terminal electrode driving, the device can be bistable and switched between focal conic and homeotropic textures with a uniform in-plane and vertical electrical field. The transparent state with a transmittance of 80% and the opaque/scattering state with a transmittance of 13% can be realized without any optical compensation film, and each can be simply switched to the other by applying a pulse voltage. Also, gray-scale selection can be performed by varying the applied voltage. The designed energy-saving bistable light shutter can be utilized to preserve privacy and control illumination and the flow of energy.

14.
Appl Opt ; 53(22): E51-5, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-25090354

ABSTRACT

This work demonstrates a multi-stable variable optical attenuator (VOA) that is fabricated by infiltrating a photonic crystal fiber (PCF) with a liquid crystal (LC) gel. Varying the cooling rate or biasing the electric field during gelation yields various degrees of scattering. Therefore, LC gel-filled PCFs with various transmittances can be realized. At a wavelength of 1550 nm, an attenuation rate of -33.4 dB/cm is obtained at a cooling rate of 30°C/min and a biasing voltage of 400 V during gelation. The proposed all-in-fiber VOA exhibits tunable attenuation and multiple stable states at room temperature.

15.
Opt Express ; 22(15): 17776-81, 2014 Jul 28.
Article in English | MEDLINE | ID: mdl-25089398

ABSTRACT

This work demonstrates an electrically tunable silicon nitride (SiN) micro-ring resonator with polymer-stabilized blue phase liquid crystals (PSBPLCs) cladding. An external vertical electric field is applied to modulate the refractive index of the PSBPLCs by exploiting its fast-response Kerr effect-induced birefringence. The consequent change in the refractive index of the cladding can vary the effective refractive index of the micro-ring resonator and shift the resonant wavelength. Crystalline structures of PSBPLCs with a scale of the order of hundreds of nanometers ensure that the resonator has a very low optical loss. The measured tuning range is 0.45 nm for TM polarized light under an applied voltage of 150V and the corresponding response time is in the sub-millisecond range with a Q-factor of greater than 20,000.

16.
Opt Express ; 22(10): 12133-8, 2014 May 19.
Article in English | MEDLINE | ID: mdl-24921333

ABSTRACT

A light-activated optical phase switch was developed, exploiting the conversion between left-handed and right-handed twisted nematic liquid crystals. Theoretical and experimental analyses revealed that the handedness inversion of the twisted nematic film altered the optical phase of the output waves by π. Herein, the competition between the helical twisting powers of the two reverse-handed chiral dopants determines the handedness of the twisted nematic film. The photo-responsibility and the bistability are attributed to the azobenzene chromophores in one of the chiral additives.

17.
Adv Mater ; 25(36): 5050-4, 2013 Sep 25.
Article in English | MEDLINE | ID: mdl-23913627

ABSTRACT

A new light-driven chiral molecular switch doped in a stable blue phase (BP) liquid crystal allows wide optical tunability of three-dimensional cubic nanostructures with a selective reflection wavelength that is reversibly tuned through the visible region. Moreover, unprecedented reversible light-directed red, green, and blue reflections of the self-organized three-dimensional cubic nanostructure in a single film are demonstrated for the first time. Additionally, unusual isothermal photo-stimulated less ordered BP II to more ordered BP I phase transition was observed in the system.

18.
Appl Opt ; 52(20): 4849-53, 2013 Jul 10.
Article in English | MEDLINE | ID: mdl-23852197

ABSTRACT

This article demonstrates a bistable optical valve in a photonic liquid crystal fiber using the thermal hysteresis effect of the phase transition between the cholesteric phase and the blue phase (BP). The attenuation is due to various scattering losses in different phases. Both cholesteric and BPs can exist stably at room temperature (RT) and can also be switched to each other using temperature-control processes. The transmission spectrum and the intensity of the guided light can be controlled with various extents of scattering loss. For optical communications, this device can be manipulated over a loss difference of 10 dB at RT and insensitive to the polarization of light.

19.
Opt Express ; 21(9): 10989-94, 2013 May 06.
Article in English | MEDLINE | ID: mdl-23669955

ABSTRACT

This investigation reports observations of optical bistability in a silicon nitride (SiN) micro-ring resonator with azo dye-doped liquid crystal cladding. The refractive index of the cladding can be changed by switching the liquid crystal between nematic (NLC) and photo-induced isotropic (PHI) states by. Both the NLC and the PHI states can be maintained for many hours, and can be rapidly switched from one state to the other by photo-induced isomerization using 532 nm and 408 nm addressing light, respectively. The proposed device exhibits optical bistable switching of the resonance wavelength without sustained use of a power source. It has a 1.9 nm maximum spectral shift with a Q-factor of over 10000. The hybrid SiN- LC micro-ring resonator possesses easy switching, long memory, and low power consumption. It therefore has the potential to be used in signal processing elements and switching elements in optically integrated circuits.


Subject(s)
Azo Compounds/chemistry , Coloring Agents/chemistry , Refractometry/instrumentation , Silicon Compounds/chemistry , Surface Plasmon Resonance/instrumentation , Transducers , Equipment Design , Equipment Failure Analysis , Miniaturization
20.
Opt Express ; 20(21): 23978-84, 2012 Oct 08.
Article in English | MEDLINE | ID: mdl-23188364

ABSTRACT

Random lasing actions have been observed in optically isotropic pure blue-phase and polymer-stabilized blue-phase liquid crystals containing laser dyes. Scattering, interferences and recurrent multiple scatterings arising from disordered platelet texture as well as index mismatch between polymer and mesogen in these materials provide the optical feedbacks for lasing action. In polymer stabilized blue-phase liquid crystals, coherent random lasing could occur in the ordered blue phase with an extended temperature interval as well as in the isotropic liquid state. The dependence of lasing wavelength range, mode characteristics, excitation threshold and other pertinent properties on temperature and detailed make-up of the crystals platelets were obtained. Specifically, lasing wavelengths and mode-stability were found to be determined by platelet size, which can be set by controlling the cooling rate; lasing thresholds and emission spectrum are highly dependent on, and therefore can be tuned by temperature.


Subject(s)
Lasers , Liquid Crystals/chemistry , Liquid Crystals/radiation effects , Models, Theoretical , Color , Computer Simulation , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...