Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 91(7): 073303, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32752792

ABSTRACT

We report an experimental implementation for neutron transverse polarization analysis that is capable of detecting a small angular change (≪10-3 rad) in neutron spin orientation. This approach is demonstrated for monochromatic beams, and we show that it could be extended to polychromatic neutron beams. Our approach employs a 3He spin filter inside a solenoid with an analyzing direction perpendicular to the incident neutron polarization direction. The method was tested with polarized neutron beams and a spin rotator placed inside a µ-metal shield just upstream of the analyzer. No cryogenic superconducting shields or additional neutron spin manipulations are needed. With a counting detector, we experimentally show that the angular resolution δθ=1/(PnAN) rad is only determined by the counting statistics for the total counts N and the product of the neutron polarization Pn and the analyzing power A. With a high-flux neutron beam, 10-6 rad angular sensitivity is feasible within a day. This simple, classical-quantum-limited transverse polarization analysis scheme may reduce the overall complexity of experimental implementation for applications requiring sensitive neutron polarimetry and improve the precision in fundamental science studies and polarized neutron imaging.

2.
Phys Rev Lett ; 118(16): 163601, 2017 Apr 21.
Article in English | MEDLINE | ID: mdl-28474904

ABSTRACT

We demonstrate matter-wave interference in a warm vapor of rubidium atoms. Established approaches to light-pulse atom interferometry rely on laser cooling to concentrate a large ensemble of atoms into a velocity class resonant with the atom optical light pulse. In our experiment, we show that clear interference signals may be obtained without laser cooling. This effect relies on the Doppler selectivity of the atom interferometer resonance. This interferometer may be configured to measure accelerations, and we demonstrate that multiple interferometers may be operated simultaneously by addressing multiple velocity classes.

3.
Rev Sci Instrum ; 82(2): 023118, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21361584

ABSTRACT

We report a simple, efficient, high voltage radio frequency (RF) generator powered by a single voltage source (1.5-7 V) to resonantly drive ion traps or other capacitive loads. Our circuit is able to deliver RF voltages > 500 V(p-p) at frequencies ranging from 0.1 to 10 MHz. This RF oscillator uses low-cost, commercially available components, and can be easily assembled onto a circuit board of a few cm(2). Because of its simplicity and good efficiency, this circuit is useful in applications requiring small size and low power consumption such as portable ion trap systems where the duration of operation under battery power is of concern.

4.
Phys Rev Lett ; 100(23): 233002, 2008 Jun 13.
Article in English | MEDLINE | ID: mdl-18643492

ABSTRACT

Precise measurements show that the microwave resonance frequencies of ground-state Rb or Cs atoms have a nonlinear dependence on the pressure of the buffer gases Ar and Kr. No nonlinearities were observed in the gases He or N(2). These observations strongly suggest that the nonlinearities are due to the van der Waals molecules that form in Ar and Kr, but not in He or N(2). The nonlinear part of the shifts is largest in the pressure range of a few tens of torr, similar to the operating pressures of gas-cell atomic clocks. The observed shifts are very well described by a simple function, parametrized by the effective three-body formation rate of molecules and by the effective product of the collisionally limited lifetime times the shift of the hyperfine coupling coefficient in the molecule.

5.
Phys Rev Lett ; 99(2): 027601, 2007 Jul 13.
Article in English | MEDLINE | ID: mdl-17678261

ABSTRACT

We report NMR measurements of metallic (133)Cs in glass cells. The solid-liquid phase transition was studied by observing the NMR peaks arising from these two phases; surprisingly, many cells yielded two additional NMR peaks below the melting point. We attribute these signals to two distinct impurities which can dissolve in the liquid alkali metal and affect its chemical shift. Intentional contamination of cesium cells with O(2) confirms this hypothesis for one peak. The other contaminant remains unknown but can appear in evacuated cells. Similar effects have been seen in (87)Rb cells.

6.
Phys Rev Lett ; 98(18): 183004, 2007 May 04.
Article in English | MEDLINE | ID: mdl-17501572

ABSTRACT

We report enhancement of the spin polarization of 133Cs nuclei in CsH salt by spin transfer from an optically pumped cesium vapor. The nuclear polarization was 4.0 times the equilibrium polarization at 9.4 T and 137 degrees C, with larger enhancements at lower fields. This work is the first demonstration of spin transfer from a polarized alkali vapor to the nuclei of a solid, opening up new possibilities for research in hyperpolarized materials.

7.
Phys Rev Lett ; 99(22): 223001, 2007 Nov 30.
Article in English | MEDLINE | ID: mdl-18233280

ABSTRACT

A vapor of alkali-metal atoms in the external cavity of a semiconductor laser, pumped with a time-independent injection current, can cause the laser to self-modulate at the "field-independent 0-0 frequency" of the atoms. Push-pull optical pumping by the modulated light drives most of the atoms into a coherent superposition of the two atomic sublevels with an azimuthal quantum number m=0. The atoms modulate the optical loss of the cavity at the sharply defined 0-0 hyperfine frequency. As in a maser, the system is not driven by an external source of microwaves, but a very stable microwave signal can be recovered from the modulated light or from the modulated voltage drop across the laser diode. Potential applications for this new phenomenon include atomic clocks, the production of long-lived coherent atomic states, and the generation of coherent optical combs.

8.
Phys Rev Lett ; 93(16): 160802, 2004 Oct 15.
Article in English | MEDLINE | ID: mdl-15524969

ABSTRACT

A new optical pumping method, "push-pull pumping," can produce very nearly pure, coherent superposition states between the initial and the final sublevels of the important field-independent 0-0 clock resonance of alkali-metal atoms. The key requirement for push-pull pumping is the use of D1 resonant light which alternates between left and right circular polarization at the Bohr frequency of the state. The new pumping method works for a wide range of conditions, including atomic beams with almost no collisions, and atoms in buffer gases with pressures of many atmospheres.

9.
Phys Rev Lett ; 92(11): 110801, 2004 Mar 19.
Article in English | MEDLINE | ID: mdl-15089119

ABSTRACT

We present experimental and theoretical results showing that magnetic resonance transitions from the "end" sublevels of maximum or minimum spin in alkali-metal vapors are a promising alternative to the conventional 0-0 transition for small-size gas-cell atomic clocks. For these "end resonances," collisional spin-exchange broadening, which often dominates the linewidth of the 0-0 resonance, decreases with increasing spin polarization and vanishes for 100% polarization. The end resonances also have much stronger signals than the 0-0 resonance, and are readily detectable in cells with high buffer-gas pressure.

SELECTION OF CITATIONS
SEARCH DETAIL
...