Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Horm Metab Res ; 47(6): 463-9, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25951322

ABSTRACT

The aim of the work was to study whether or not 11-keto-ß-boswellic acids prevent induction of autoimmune reactions, insulitis, and hyperglycemia in the model of multiple low-dose streptozotocin (MLD-STZ) diabetes. Using male mice (n = 6) diabetes was induced by daily i.p. injections of 40 mg/kg STZ for 5 days. In a second series together with STZ, daily i. p. injections of 11-keto-ß-boswellic acid (KBA) and O-acetyl-11-keto-ß-boswellic acid (AKBA) (7.5 and 15.0 mg/kg) were applied for 10 days. Thereafter, pro-and anti-inflammatory cytokines in the blood, histochemistry of pancreatic islets, and blood glucose levels were assayed. Five days after the last injection of STZ, a significant burst of pro-and anti-inflammatory cytokines in the blood, infiltration of lymphocytes (CD3) into pancreatic islets, and appearance of peri-insular apoptotic cells were observed. Plasma glucose increased significantly (124.4 ± 6.65 vs. 240.2 ± 27.36 mg/dl, p <0.05). Simultaneous treatment with KBA and AKBA significantly reduced pro-and anti-inflammatory cytokines (IFN-γ p < 0.01, p < 0.01; IL-1A p < 0.001, p < 0.001; IL-1B p < 0.001, p < 0.001; IL-2 p < 0.001, p < 0.001; IL-6 p < 0.01, p < 0.001; TNF-α p < 0.05, p < 0.001; IL-4 p < 0.01, p < 0.001; IL-10 p < 0.001, p < 0.001) in the blood. No infiltration of lymphocytes into pancreatic islets and appearance of peri-insular cells were detected. Moreover, KBA and AKBA reduced STZ-mediated increase of blood glucose on day 10 to 163.25 ± 16.6 (p < 0.05) and 187.6 ± 19.5 mg/dl (p < 0.05), respectively. In the model of MLD-STZ induced diabetes KBA and AKBA prevent cytokine burst, development of insulitis and reduce increase of blood glucose through "silencing" a forced-up immune reaction.


Subject(s)
Autoimmunity/drug effects , Cytokines/blood , Hyperglycemia/prevention & control , Triterpenes/therapeutic use , Animals , Autoimmunity/immunology , Blood Glucose , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/immunology , Hyperglycemia/blood , Hyperglycemia/immunology , Insulin/blood , Islets of Langerhans/drug effects , Islets of Langerhans/immunology , Male , Mice , Triterpenes/pharmacology
2.
Br J Pharmacol ; 162(1): 147-62, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20840544

ABSTRACT

BACKGROUND AND PURPOSE: Frankincense, the gum resin derived from Boswellia species, showed anti-inflammatory efficacy in animal models and in pilot clinical studies. Boswellic acids (BAs) are assumed to be responsible for these effects but their anti-inflammatory efficacy in vivo and their molecular modes of action are incompletely understood. EXPERIMENTAL APPROACH: A protein fishing approach using immobilized BA and surface plasmon resonance (SPR) spectroscopy were used to reveal microsomal prostaglandin E(2) synthase-1 (mPGES1) as a BA-interacting protein. Cell-free and cell-based assays were applied to confirm the functional interference of BAs with mPGES1. Carrageenan-induced mouse paw oedema and rat pleurisy models were utilized to demonstrate the efficacy of defined BAs in vivo. KEY RESULTS: Human mPGES1 from A549 cells or in vitro-translated human enzyme selectively bound to BA affinity matrices and SPR spectroscopy confirmed these interactions. BAs reversibly suppressed the transformation of prostaglandin (PG)H(2) to PGE(2) mediated by mPGES1 (IC(50) = 3-10 µM). Also, in intact A549 cells, BAs selectively inhibited PGE(2) generation and, in human whole blood, ß-BA reduced lipopolysaccharide-induced PGE(2) biosynthesis without affecting formation of the COX-derived metabolites 6-keto PGF(1α) and thromboxane B(2) . Intraperitoneal or oral administration of ß-BA (1 mg·kg(-1) ) suppressed rat pleurisy, accompanied by impaired levels of PGE(2) and ß-BA (1 mg·kg(-1) , given i.p.) also reduced mouse paw oedema, both induced by carrageenan. CONCLUSIONS AND IMPLICATIONS: Suppression of PGE(2) formation by BAs via interference with mPGES1 contribute to the anti-inflammatory effectiveness of BAs and of frankincense, and may constitute a biochemical basis for their anti-inflammatory properties.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Boswellia/chemistry , Intramolecular Oxidoreductases/antagonists & inhibitors , Triterpenes/pharmacology , Animals , Catalysis , Cell Line , Cell-Free System , Humans , Immunoenzyme Techniques , Intramolecular Oxidoreductases/metabolism , Male , Mice , Prostaglandin-E Synthases , Rats , Rats, Wistar , Surface Plasmon Resonance , Triterpenes/isolation & purification
3.
Am J Physiol Gastrointest Liver Physiol ; 290(6): G1131-7, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16423918

ABSTRACT

Recent clinical trials of the gum resin of Boswellia serrata have shown promising results in patients with ulcerative colitis. The objective of this study was to determine whether a semisynthetic form of acetyl-11-keto-beta-boswellic acid (sAKBA), the most potent anti-inflammatory component of the resin, also confers protection in experimental murine colitis induced by dextran sodium sulfate (DSS) to compare its effects with those standard medications of ulcerative colitis like steroids and to examine whether leukocyte-endothelial cell adhesion is a major target of action of sAKBA. Clinical measurements of disease activity and histology were used to assess disease progression, and intravital microscopy was employed to monitor the adhesion of leukocytes and platelets in postcapillary venules of the inflamed colon. sAKBA treatment significantly blunted disease activity as assessed both grossly and by histology. Similarly, the recruitment of adherent leukocytes and platelets into inflamed colonic venules was profoundly reduced in mice treated with sAKBA. Because previous studies in the DSS model have shown that P-selectin mediates these blood cell-endothelial cell interactions, the expression of P-selectin in the colonic microcirculation was monitored using the dual-radiolabeled antibody technique. The treatment of established colitis with sAKBA largely prevented the P-selectin upregulation normally associated with DSS colitis. All of the protective responses observed with sAKBA were comparable to that realized in mice treated with a corticosteroid. Our findings demonstrated an anti-inflammatory effect of sAKBA and indicated that P-selectin-mediated recruitment of inflammatory cells is a major site of action for this novel anti-inflammatory agent.


Subject(s)
Colitis/drug therapy , Colitis/immunology , Disease Models, Animal , Leukocytes/immunology , Platelet Activation/immunology , Triterpenes/administration & dosage , Animals , Anti-Inflammatory Agents/administration & dosage , Cell Adhesion/drug effects , Colitis/chemically induced , Colitis/pathology , Dextran Sulfate , Dose-Response Relationship, Drug , Female , Leukocytes/drug effects , Leukocytes/pathology , Mice , Mice, Inbred C57BL , Platelet Activation/drug effects , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...