Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Cell Physiol ; 324(2): C517-C531, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36622067

ABSTRACT

The use of autografts, as primary cell and tissue source, is the current gold standard approach to treat critical size bone defects and nonunion defects. The unique mixture of the autografts, containing bony compartments and bone marrow (BM), delivers promising results. Although BM mesenchymal stromal cells (BM-MSCs) still represent a major target for various healing approaches in current preclinical research and respective clinical trials, their occurrence in the human BM is typically low. In vitro expansion of this cell type is regulatory challenging as well as time and cost intensive. Compared with marginal percentages of resident BM-MSCs in BM, BM mononuclear cells (BM-MNCs) contained in BM aspirates, concentrates, and bone autografts represent a readily available abundant cell source, applicable within hours during surgical procedures without the need for time-consuming and regulatory challenging cell expansion. This benefit is one reason why autografting has become a clinical standard procedure. However, the exact anatomy and cellularity of BM-MNCs in humans, which is strongly correlated to their unique mode of action and wide application range remains to be elucidated. The aim of this review was to present an overview of the current knowledge on these specific cell types found in human BM, emphasize the contribution of BM-MNCs in bone healing, highlight donor site dependence, and discuss limitations in the current isolation and subsequent characterization procedures. Hereby, the most recent and relevant examples of human BM-MNC cell characterization, flow cytometric analyses, and findings are summarized, with a strong focus on bone therapy.


Subject(s)
Bone Marrow , Fracture Healing , Humans , Autografts , Transplantation, Autologous , Bone Marrow Cells
2.
J BUON ; 18(2): 504-10, 2013.
Article in English | MEDLINE | ID: mdl-23818369

ABSTRACT

PURPOSE: Natural products have been investigated for promising new leads in pharmaceutical development. The purpose of this study was to analyze the biological effect of GE132+Natural, a novel supplement consisting of 5 compounds: Resveratrol, Ganoderma lucidum, Sulforaphane, Lycopene and Royal jelly. METHODS: The antiproliferative activity of GE132+Natural was tested on 3 different human cancer cell lines: MCF7 (breast cancer cells), PC3 (prostate cancer cells), and SW480 (colon cancer cells), as well as on EA.hy 926 (normal human endothelial cell line). In addition, the cytotoxicity of GE132+- Natural on the proliferation of primary human mesenchymal stem cells isolated from dental pulp (DP=MSC), along with its in vitro impact on different peripheral blood parameters, was determined. RESULTS: The results revealed high antiproliferative activity of GE132+Natural on all tested cancer cell lines (PC3, MCF7 and SW480), as well as on the EA.hy 926 endothelial cell line in a dose-dependent manner. However, applied in a wide range of concentrations GE132+Natural did not affect both the proliferation of primary mesenchymal stem cells and the peripheral blood cells counts. CONCLUSION: The data obtained demonstrated that GE132+Natural is effective in inhibiting cancer cell proliferation, indicating its potential beneficial health effects. In addition, the results pointed that adult mesenchymal stem cells might be valuable as a test system for evaluating the toxicity and efficacy of new medicines or chemicals.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Colonic Neoplasms/pathology , Dietary Supplements , Prostatic Neoplasms/pathology , Antineoplastic Agents/toxicity , Blood Cells/drug effects , Dietary Supplements/toxicity , Dose-Response Relationship, Drug , Drug Combinations , Endothelial Cells/drug effects , Female , Humans , MCF-7 Cells , Male , Mesenchymal Stem Cells/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...