Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Avian Pathol ; 49(6): 678-688, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32835506

ABSTRACT

We explored the between-group and temporal variations in the intestinal Escherichia coli populations of broilers under experimental conditions, taking both antimicrobial resistance and virulence into consideration. Four replicates of 45 commercial chicks were reared in four animal facilities. On their first day of life (Day 0), they were orally inoculated with two extended-spectrum-cephalosporin-resistant (ESCR) E. coli (2.72 log10 CFU of a bla CMY-2- and 2.55 log10 CFU of a bla CTX-M-carrying E. coli). Faecal samples were then collected weekly and caecal samples were obtained from birds sacrificed on Days 21 or 42. The total, ESC-, ciprofloxacin- and gentamicin-resistant E. coli populations were enumerated on MacConkey (MC) and MC-supplemented media, and eight virulence-associated genes (VAGs) (iroN, iutA, iss, ompT, hlyF, vat, frzorf4 , and fyuA) were sought by PCR on isolates obtained on MC agar. The results showed significant between-group differences in the size of the resistant sub-populations and the presence of VAGs. Contrary to bla CTX-M-positive strains, bla CMY-positive strains persisted up to Day 42, but represented only a minor fraction of the total E. coli population. The ESC-, gentamicin- and ciprofloxacin-resistant populations decreased over time. Isolates obtained during the first week contained a mean of 5.1 VAGs. The percentages of some VAG profiles differed between faecal isolates on Day 41 and caecal isolates on Day 42. The fluctuations or differences between E. coli isolates according to group, age, and faecal or caecal origin need to be considered when designing experimental protocols and seeking to improve colibacillosis control. RESEARCH HIGHLIGHTS Temporal variations in the intestinal E. coli populations of broilers was studied. The antibiotic-resistant populations decreased over time. Virulence profiles differed between faecal isolates on Day 41 and caecal isolates on Day 42. Strains with the highest numbers of virulence genes were present during the first days.


Subject(s)
Chickens/microbiology , Drug Resistance, Bacterial , Escherichia coli Infections/veterinary , Escherichia coli/isolation & purification , Poultry Diseases/microbiology , Animals , Escherichia coli/drug effects , Escherichia coli/pathogenicity , Escherichia coli Infections/microbiology , Feces/microbiology , Gastrointestinal Tract/microbiology , Virulence
2.
Res Vet Sci ; 132: 194-201, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32619800

ABSTRACT

Mucosa are the routes of entry of most pathogens into animals' organisms. Reducing the important global burden of mucosal infectious diseases in livestock animals is required in the field of veterinary public health. For veterinary respiratory pathogens, one possible strategy is the development of intranasal (IN) DNA vaccination. The aim of this study was to assess the feasibility of IN DNA vaccination in pigs, an important species in livestock production industry, and a source of zoonotic diseases. To achieve this goal, we used a DNA vaccine against pseudorabies virus (PrV) encoding the immunogenic glycoprotein B (pcDNA3-gB plasmid). When pigs were inoculated with the naked DNA vaccine through the IN route, PrV-specific IgG and IgA type antibodies were detected in porcine sera. Interestingly, mucosal salivary IgA antibodies against PrV were also detected, at similar levels to those measured following intramuscular injection (positive controls). Furthermore, the IN delivery of pcDNA3-gB combined with PLGA-PEI nanoparticles resulted in similar levels of antibodies but was associated with an increase in the duration of detection of mucosal IgA for 2 out of 3 pigs. Our results suggest that there is room to improve the efficacy of IN DNA vaccination in pigs through optimization of IN inoculations, for example by using nanoparticles such as PLGA-PEI. Further studies will be dedicated to optimizing and testing the protective potential of IN DNA vaccination procedures against PrV.


Subject(s)
Administration, Intranasal/veterinary , Antibodies, Viral/immunology , Pseudorabies/prevention & control , Swine Diseases/prevention & control , Vaccination/veterinary , Vaccines, DNA/administration & dosage , Viral Vaccines/administration & dosage , Administration, Intranasal/methods , Animals , Feasibility Studies , Herpesvirus 1, Suid/drug effects , Nanoparticles/administration & dosage , Pseudorabies/virology , Sus scrofa , Swine , Swine Diseases/virology , Vaccines, DNA/classification , Viral Vaccines/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...